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ABSTRACT

In this paper, method-of-lines (MOL) in conjunction with optimal five-stage, order four
strong stability-preserving time-stepping Runge-Kutta (SSP-RK54) scheme is proposed
to find the approximate solution of the unsteady Burgers’ equation. The MOL is used
in space, and the SSP-RK54 scheme is used in time for solving the resulting system of
ordinary differential equations. To check the efficiency and accuracy of the method, two
test examples of Burgers’ equation are included with their numerical solutions, L, and
L errors and comparison is done with the exact solution for modest values of Reynold
numbers (Re). The numerical solutions obtained typically does not exhibit nonlinear
instabilities. It is also obsered that, the proposed method yields satisfactory results for
all the cases considered. The proposed method is found to be robust for low and high Re
therefore the proposed method also be useful for general models involving the solution
of advection-diffusion equations.

1 Introduction

We consider a very famous one-dimensional non-linear unsteady Burgers’ equation

du Ju 1 9*u

EJFUEZE@’ D<z<l, 0<t<T (1)
uw(xz,0) = f(z), 0<z<1 (2)
w(0,t) = g1(t), wu(l,t)=go(t), O0<t<T (3)

where u, x, t and Re are the velocity, spatial coordinate, time and Reynold number
respectively. In 1915, Harry Bateman (1882-1946) [1], an English mathematician, intro-
duced this equation in his paper along with its initial and boundary conditions. Later
in 1948, Johannes Martinus Burgers (1895-1981) [2], a Dutch physicist, explained the
mathematical modeling of turbulence with the help of Equation (1). In order to honor
the contributions of Burgers, this equation is well known as the “Burgers’ equation”.

In last decades, the application of this model in various important fields has encour-
aged researcher to solve the Burgers’ equation more efficiently. In 1930, Rothe [7] who



was from former Soviet Union, has introduced method-of-lines (MOL) in his paper. The
relative merits and demerits of MOL with an ordinary differential equation solver to
classical explicit and implicit finite difference techniques were compared by Kurtz [5].
Shampine [8] has investigated factors influencing the choice of ordinary ditferential equa-
tion solver for the numerical solution of advection-diffusion partial differential equation
by MOL. Oymak [6] has proposed a time-accurate Navier-Stokes code based on the MOL
approach with a non-iterative algorithm for the pressure. The special class of high-order
time discretization methods were used to design the high-order methods that are nonlin-
early stable. These methods are well known as strong-stable-preserving (SSP) methods
[9] [10]. SSP time discretization methods are popular and effective algorithms for the
simulation of partial differential equations having discontinuous or shock-like solutions.
The main motivation for this work is the need of robust scheme for the solution of
Burgers’ equation with high Re which is a common fluid flow situation. In this paper,
Equation (1) is semi-discretized with respect to spatial variable by MOL. This result in
a system of ordinary differential equations in the variable “t”. The resulting system of
ordinary differential equations is solved by SSP-RK54 scheme [10]. SSP-RK54 scheme is
selected as it required less storage space which result in less accumulation of numerical
errors. The accuracy and reliability of the proposed method is verified by performing
several numerical experiments.

2 Difference Scheme

MOL which is a popular semi-discretization method for the solution of time-dependent
partial differential equations is used. The obtained set of ordinary differential equation is
integrated using SSP-RK54 scheme. The solution domain of Equation (1) is discretized
with uniform mesh. The space interval [0, 1] is divided into N equal subinterval. Assum-
ing Az = 1/N as the mesh width in space and z; is set as z; = iAzx for i = 0,1,..., V.

2.1 Semi-discretization: Method of Lines (MOL)

Equation (1) is first discretized in spatial variable to obtain a semi-discrete MOL scheme.
u

Convective term (ug—w) is discretized by using second order upwind method that maintain

unidirectional flow of information. Whereas central difference is used for discretization

of diffusive term (%%) Equation (1) is written as
Oui 1 fuicg — 2w+ w1 ) ” S —Aui g +uio ()
dt  Re Ax? ‘ 2Ax

Equation (4) is written as system of ordinary differential equations in time, that is, for
i=2,....,N, we have

d =4
E(ui) = L(u;) (5)

where L, denotes a spatial non-linear differential operator

L) — Loy = 2w fuig ) w ug — A g+ uo
" Re Ax? ' 2Ax

(6)



Table 1: The coefficients of the optimal SSPRK (5,4) scheme |10].

1
0.44437049406734  0.55562950593266
aj 0.62010185138540 0 (.37989814861460
0.17807995410773 0 0 0.82192004589227
0.00683325884039 0 0.51723167208978  0.12759831133288  .34833675773694
0.39175222700392
0 0.36841059262959
Gk 0 0 0.25189177424738
0 0 0 0.54497475021237
0 0 0 0.08460416338212  0.22600748319395

2.2 Time Integration

In this way, we find a system of ordinary differential equation (5) which is solved by five-
stage, order four strong stability-preserving time-stepping Runge-Kutta (SSP-RK54)
scheme [10]. The class of SSP method used is defined by the property that the number
of stages s (s = 5) is greater than the order k (k = 4) of the method.

2.2.1 SSP-RK54

The objective of SSP-RK54 is to maintain the strong stability property while achieving
higher order accuracy in time. Consider an s-stage, explicit RungeKutta method written
in the form

U —pyn, (7)
j—1

U9 =3 U™+ Atg L(UM)), j=1,2.. (8)
k=0

Ut = e, (9)

where all aj, > 0 and oy = 0 only if 55 = 0 [9]. SSP-RK54 scheme has a Courant-
Friedrichs-Levy (CFL) coefficient of 1.50818004975927. For consistency, we must have

i:g ajp = 1, j = 1,2..s Table (1) gives the value of aj and 3. coeflicients.
Equation (5) is integrated from time ¢, to ¢, + At through the following operations
and consequently the solution u(z,t) at a particular time level is completely known.
The fully discrete scheme for Equation (1) is as follow

Wl = p (10)

where v is a initial condition

(0) {0) (0) ,,(0) (0) (0)
w: o—2u 4w 3u; ' — 4w+ w
() _ (0)+At 0.39175222700392 —1 i1~ 2 Yit1 () Bu; i1 i—2
i i (0.5 92) Re Az? Y 2Ax
(11)

ul? = (0.44437049406734)u” + (0.55562950593266)u'") + At(0.36841059262959)

i




1 1 1 o (1 1 1
L B () »
Re Ax? t 2Az

0.62010185138540)u'”) + (0.37989814861460)u'” + AL(0.25189177424738
4 7 2 LA 74247

_i ug)l (2) + uﬁ)l B u(?) 3u§ ) 411(2)1 + u(z) (13)

Re Amz g 2Az '
= (0.17807995410773)u'” + (0.821920 )4’8‘)227)1:&(3) + At(0.54497475021237)

r 3 3 3 3 3

(0 (i) »

Re /_\x2 ! 2Az

Final solution is given by

ud™ Y = (0.00683325884039)u!”) + (0.51723167208978)u'” + (0.127598311:33288)u'*) +

3 _ 98 1 4 @ _ 3, ()
AL(0.08460416338212) lﬁi (“t—l +“a+1) _—e) ( ) Uiy + U z)
€

5 = +(0.34833675773694)u Y+
T xr

4 4 4 4 4 4
b ) — 2ut 4 u§+)1 W sy — 4u®y + Y (15)
Re Ax? ! 2A.7;

. T . . a 1
where ¢ = 2,..., N. For next iteration v = u".

AL(0.22600748319395)

3 Numerical Experiments

In this section, the numerical solutions by the proposed method are evaluated for two
test examples of Burgers’ equation. Exact solution was elaborated by Kadalbajoo and
Awasthi [4] for both examples 1 and 2. The accuracy of numerical method is measured
with the help of exact solution. Also. L, and L. errors are evaluated to measure the
accuracy and the efficiency of the proposed method. L, and L., errors are defined as

1

N 2
. (Z[usm—urf) Lo = o ™ — o] (16
1=1

where u” represent the numerical solution at node i.

Example 1. Burgers’ equation (1) with initial condition and homogeneous boundary
conditions

w(x,0) =sin(rz), 0<z <1, (17)

uw(0,t) =u(l,t) =0, 0<t<rT (18)
Example 2. Burgers’ equation (1) with the following initial condition and boundary
conditions

w(w,0) =4x(l —z), O0<z<l, (19)

w(0,8) =0=u(l,t), 0<t<r (20)
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Figure 1: Numerical solutions of example 1 at several times for N=80 with different
values of Re and At , (a) Re = 1,At = 0.0001; (b) Re = 10,At = 0.0001; (c)
Re =100, At = 0.01 ; (d) Re = 200, At = 0.01.
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Figure 2: Numerical solution of example 1 at several times for N=80 with At = 0.0001
and different values of Re, (a) Re = 10% (b) Re = 10*; (¢) Re = 10°; (d) Re = 10°.

04 : - - T T T
Numerical Solution == #/"" i Numerical Solution === i
.35 Exact Solution gt oz : a 0.3 Exact Solution /’ 2
. . ot - .
03 ¥ Mg = L
0251 i .
- 5 i
N o2s- =t > 1 4
= -~ ™ & ooz _
5 02 o e 18
R=} e T=0.2 N S 0150 .
S 0.45- e N, 41 = ’
& / /"’_’_H.,—w e \'\ il I, N
01+ s at R N . B
et 1-0.3 e 1N o068 L B ! . B
005- 4 P e ————— g . . p e P D So e T
ot P BOaS T=0.4 e - NS BRE =y i M U S = )
e e T e Ittt st ; ; N Maastusecy sy, Mty
% 01 0.2 03 04 y_~ 05 0.6 07 08 08 01 02 03 04 y_ . 05 06 a7 08 09

(a) (b)



0 ; : . : : ) ‘ : . .
1 Numerieal Solution -~~~ ;:: Elumggwf Solution ==~ R
0.14~-Exact Solution + - [ Exact Solution - Y =
012t _,v"’f /’r“““\\ ) 014 o ,
Aok - \ n e
Zoos| .1:7'5'-' -l
§ . T \, g 0.08
goos— g T B eay aapts S Ao 2 oos-
\ ‘ 5 . 5
2 002 ey i
P el s . s
(o] 0.1 0.2 03 04x > 05 06 07 08 09 1
(d)
Figure 3: Numerical solution of example 2 at several times for N=80 with different
values of Re and At, (a) Re = 1,At = 0.0001; (b) Re = 10,At = 0.0001; (c)
Re — 100, At — 0.01; (d) Re — 200, At — 0.01.
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Figure 4: Numerical solution of example 2 at several times for N=80 with different
values of Re and At, (a) Re = 10°, At = 0.0001; (b) Re = 10% At = 0.0001;(c)
Re = 10°, At = 0.0001; (d) Re = 10%, At = 0.0001.

Figure 1 and 3 show the graphs for computed and exact solutions at different time for
various values of Re. Reynold number Re = 1,10, 100 and 200 are considered with
Az = 0.0125 to compare computed solutions with exact solutions. From these graphs
it is observed that the proposed method gives accurate results for any value of time
step At. It is found that the computed results show better agreement with the exact
solution. Ly and L. errors are presented for example 1 (Table 2) and example 2 (Ta-
ble 3) with Az = 0.0125 for different Re and time level. Numerical difficulties arise in
the solution for the case of large Re because exact solution fails when Re is high [11].
Under most practical conditions, the flow in a circular pipe is turbulent for Re > 4000
[3]. The proposed method gives accurate results for turbulent flow also. The numerical
solutions of example 1 (Figure 2) and example 2 (Figure 4) are plotted for Reynold
numbers Re = 10%,10%, 10° and 10° at different time levels. A small time increment
(At = 0.0001) is chosen to ensure high accuracy. Significantly contrasting behavior is



Table 2: Ly and L., errors of Example 1 for At = 0.0001 at different Re and time (T)

Re — 10 Re =1
T L, Lo T L Lo
1 1.2964 x 1073 2.3846 x 104 0.1 2.8874 x 10°% 4.9342 x 10°°
2 45825 x 107*  7.4246 x 107° 0.2 2.1400 x 10~*  3.4100 x 10~
3 1.4344 x 107*  2.2806 x 107° 0.3 4.5458 x 10™*  7.1879 x 107°
4 41592 x 107°  6.5860 x 106 0.4 6.1320 x 107°>  9.6950 x 10~°
Re = 100 Re = 200
T L, Lo T L L
5 22278 x 1073 6.8530 x 10°* 7 25599 x 1077 9.4808 x 101
10 5.3430 x 107*  1.1698 x 10~* 10 1.1851 x 107 3.7044 x 10~*
15 24224 x 107*  4.3855 x 107° 15 4.9769 x 1074 1.2703 x 104
20 1.3402 x 107* 2.2167 x 107° 20 2.7435 x 107*  6.0575 x 1075

Table 3: Ly and Ly, errors of Example 2 for At = 0.0001 at different Re and time (T)

Be =10 Re =1
T L, L T L L
1 1.6206 x 10°° 2.3846 x 1074 0.1 3.6093 x 1076 4.9342 x 10°°
2 57282 x 10°%  7.4246 x 10°° 0.2 2.6750 x 1075  3.4100 x 105
3 1.7931 x 10°% 2.2806 x 10°° 0.3 5.6823 x 1078 7.1879 x 105
4 51991 x 1077 6.5860 x 1076 0.4 7.6651 x 1077 9.6950 x 10~°
Re = 100 Re = 200
T L, L T L, L
5 27848 x 107" 6.8530 x 10~* 7 31999 x 1077 9.4898 x 10~*
10 6.6788 x 1075 1.1698 x 10~* 10 1.4814 x 107°  3.7044 x 1074
15 3.0281 x 1076  4.3855 x 10°° 15 6.2212x 10°% 1.2703 x 104
20 1.6753 x 107% 2.2167 x 107° 20 3.4294 x 107  6.0575 x 107°

observed for high Reynold number. When Re is high, the diffusive term (

2
291 tends

to zero and it’s effect is negligible on numerical solution. In such situation Equation (1)
which is basically viscous Burgers’ equation behaves like inviscid Burgers™ equation.

4 Conclusions

A new method has been developed to solve the non-linear partial differential equations.
In this new approach semi-discretization of partial differential equation in spatial variable
is done by MOL. In this way, we find a system of ordinary differential equations which
is solved by SSP-RK54 scheme. To check the efficiency and accuracy of the method, two
test examples of Burgers’ equation are considered and numerical solutions are compared
at various values of Re. The numerical errors are also evaluated in L, and L., norms.
It is evident that proposed method produces better results and approach to the exact
solution. The present numerical experiments have confirmed that the proposed method

7



is unconditionally stable even for high Reynold numbers, where other methods are found
to be fail. This method may also be implemented to solve numerically higher dimensional
nonlinear partial differential equations in fluid mechanics.
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