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Abstract: This paper gives a numerical integration rule for integrating functions over an n-
simplex. The rule is derived using a simple transformation of  the given n-simplex to a zero-
one n-cube. The proposed method is proved to be near-optimal for integration of an arbitrary 
function over n-simplexes. The performance of the method is illustrated for different type of 
integrands over different two, three, four and five simplexes. 
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Introduction  
Evaluation of multiple integrals numerically is a challenging work in numerical analysis. At 
the same time such integrals appear in many fields, such as finite element methods (to 
calculate the stiffness matrix), in fluid mechanics, computer graphics (to solve integral 
equations), in financial mathematics (to determine the value of sophisticated financial 
derivatives, such as exotic options and to determine the value at risk) and in many other 
fields. 
Most of the multiple integration formulae are derived by solving many systems of non-linear 
equations which is a very tedious procedure. Due to this difficulty, derivation of cubature 
rules becomes a challenge, even though these rules are effective to some extent. For this 
reason the formulation of quadrature rules over multidimensional regions remains an open 
area of research as demonstrated by many authors. The integration rule proposed in this paper 
doesn’t require solving non-linear systems of equations, as we are deriving a product formula 
using the one-dimensional quadrature points given in Ma et.al.[1996].   

In Ma et.al.[1996], the authors have given the generalized Gaussian quadrature rules over 
different functions for one-dimensional integration and proved that their results are better 
compared to all other quadrature rules. In Sarada and Nagaraja [2011,2012], the authors have 
used these generalized Gaussian quadrature rules to derive a quadrature rule over any 
bounded two dimensional regions. In Sarada and Nagaraja [2014], a generalized Gaussian 
quadrature rule over n-dimensional cubes is derived. In this paper a numerical integration 
formula is derived to integrate functions over n-dimensional simplexes and the generalized 
Gaussian quadrature rules are used for numerical evaluation. 

The remainder of this paper is organized as follows: Section 2 presents the mathematical 
preliminaries required for understanding the derivation. Section 3 explains the derivation of 
the method and section 5 elucidates the numerical results. Finally, in section 6 we give the 
conclusions. 

 
Mathematical Preliminaries 
Numerical Integration 
In numerical integration an integral is typically approximated by a weighted sum of integrand 
evaluations. 
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I[f] = ∫ 푓(풙)푑훺 = ∑ 푤 푓(풙 ) = Q[f]  with 풙 휖 훺    (1) 

If the dimension of the integration region d=1 the approximation in (1) is called a quadrature 
formula. If d ≥2 the approximation in (1) is called a cubature formula. The term integration 
rule is also used. 

Generalized Gaussian quadrature 
The Gaussian quadrature is a numerical integration formula given by 

∫ 푞(푥)휙(푥)푑푥 =  ∑ 푤 휙(푥 )                    (2) 

where 푥  휖 [푎,푏] 푎푛푑  푤  휖 푹 , for all 푖 = 1, 2, … ,푁.  The points 푥  and the coefficients  푤  
are referred to as the nodes and weights of the quadrature formula. The quadrature formula 
given in eq.(1) is called a classical Gaussian quadrature rule if it integrates exactly all 
polynomials of order upto 2N-1, whereas eq. (2) is said to be a generalized Gaussian 
quadrature rule with respect to a set of functions {휙 ,휙 , … ,휙 } if it integrates exactly all 
the 2N functions in the set  {휙 ,휙 , … ,휙 }.  
The generalized Gaussian quadrature with respect to the set of functions 
{1, 푙푛푥, 푥, 푥푙푛푥, … , 푥 ,푥 푙푛푥} for N = 5, 10, 15, 20, 40 are given in the table 1 of [8]. 
We shall be using these nodes and weights in the product formula shown in the next section. 

n-Simplex 
An n-simplex in the positive orthant, Rn+ , with the origin as one of the corners is given by 

푋 = (푥 , 푥 , … ,푥 )/ 푥 ≤ 푎 , 푥 > 0  

Here n represents the dimension of the region 푋 . 

A 2-simplex is the triangle with endpoints (0,0), (a,0) and (0,a) whereas a 3-simplex is a 
tetrahedron with corners at (0,0,0), (a,0,0), (0,a,0) and  (0,0,a).    

 
Derivation of the numerical integration rule over n-simplex 
Consider the integral, 

 퐼[푓] = ∫ 푓(풙)풅푋        (3) 

of  a function 푓(풙) over the n-simplex, 

푋 = (푥 ,푥 , … , 푥 )/ 푥 ≤ 푎 ,푥 > 0  

To evaluate the integral in Eq.(3) numerically, we derive a quadrature formula by 
transforming 푋  to a zero-one n-cube in 휉 − 휉 −. . . 휉  , 

       퐶 = {(휉 , 휉 , … , 휉 ) | 0 ≤ 휉 ≤ 1, 푖 = 1,2, … , 푛}  
using the transformation  

푥 = 푎휉  

푥 = 푎(1− 휉 )휉  

푥 = 푎(1 − 휉 ) (1 − 휉 ) 휉  
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… 
푥 = 푎(1 − 휉 ) (1 − 휉 ) …  (1 − 휉 ) 휉  

The Jacobian of this transformation is  
| 퐽 | = 푎 (1 − 휉 )  (1 − 휉 ) …  (1 − 휉 )  (1− 휉 )    

Hence, the integral in Eq.(3) will now be 

      퐼[푓] = ∫ 푓(풙)풅푋    

= ∫ ∫ ∫ …∫ f(x , x ,... … ,푥 )  푑푥 … 푑푥 푑푥                           
          = ∫ ∫ … ∫ 푓(풙( 휉̅ )) | 퐽 |  푑휉 …푑휉 푑휉  

After applying the generalized Gaussian quadrature rule to each directions, we get 

퐼 ≈ … 푤1
푖1푤2

푖2 … 푤푛
푖푛 푓 풙(휉1

푖1 , 휉2
푖2 , … , 휉푛

푖푛)  | 퐽 |   

       where   풙 = (푥 , 푥 , … ,푥 ) 

∴ 퐼 ≈ 푐 푓(푥 ,푥 , … ,푥 ) 

             (4) 

           where   푐 = 푤1
푖1푤2

푖2 … 푤푛
푖푛 | 퐽 | 

    i.e.   푐 = 푎 1 − 휉1
푖1 (1 − 휉2

푖2) … (1 − 휉푛−2
푖푛−2) (1 − 휉푛−1

푖푛−1) 푤1
푖1푤2

푖2 … 푤푛
푖푛         (5) 

   and   푥 = 푎 1 − 휉1
푖1 1 − 휉2

푖2 … (1 − 휉푗−1

푖푗−1) 휉푗
푖푗  for 푗 = 1, 2, … ,푛    (6) 

휉 , 휉 , …, 휉  in Eqs.(5 & 6) are the node points in (0,1) and 푤 ,푤 , … ,푤  are their 
corresponding weights in one dimension. Any quadrature points and their corresponding 
weights can be applied in this formula, like the Gauss Legendre, Gauss Jacobi etc. We are 
using the generalized Gaussian quadrature nodes and weights given in Ma et.al.[1996]in our 
approach, as it is proved in Ma et.al.[1996], Sarada and Nagaraja [2011,2012, 2014] that 
these nodes and weights give better results compared to any other ones for integration over 
any bounded regions.  

After applying the generalized Gaussian quadrature points and their corresponding weights in 
Eq.(5&6), we get the weights 푐  and the nodal points (푥 , 푥 , … , 푥 ) , which are used in 
the integration formula (Eq.(4)) for integrating a function 푓(푥, 푦) over the n-simplex  푋 .  

Numerical Results 
In this section, we write the formula for integration over the 2-simplex(triangle), 3-
simplex(tetrahedron), 4-simplex and 5-simplex along with numerical results. 

Integration over a 2-simplex 
When n=2, the simplex is a triangle in the first quadrant with endpoints (0,0),(1,0) and (0,1), 
the quadrature rule as derived in section 3 will be, 
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푓(풙)풅푋 = 푓(푥 ,푥 )푑푥 푥 ≈ 푐 푓(푥 ,푥 )  

where, 푐 = 푎 (1 − 휉1
푖1) 푤1

푖1푤2
푖2          

                푥 = 푎휉1
푖1  

  푥 = 푎 1 − 휉1
푖1  휉2

푖2 

Integration over a 3-simplex 
The 3-simplex is a tetrahedron in the first octant bounded by the XY plane, YZ plane, XZ 
plane and the plane +푦 + 푧 = 푎 . By giving n=3, in Eqs.(4), (5) and (6), we get  

푓(풙)풅푋 = 푓(푥 ,푥 , 푥 )푑푥 푑푥 푥 ≈ 푐 푓(푥 ,푥 ,푥 )  

where, 푐 = 푎 (1 − 휉1
푖1)   (1 − 휉2

푖2) 푤
1

푖1푤2
푖2푤3

푖3          

                푥 = 푎휉1
푖1  

푥 = 푎 1 − 휉1
푖1  휉2

푖2 

  푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  휉3
푖3 

Integration over a 4-simplex 
To integrate a function over the 4-simplex, the formula to be used is 

푓(풙)풅푋 = 푓(푥 ,푥 ,푥 ,푥 )푑푥 푑푥 푑푥 푥  

≈ 푐 푓(푥 ,푥 ,푥 ,푥 ) 

where, 푐 = 푎 (1 − 휉1
푖1)  (1 − 휉2

푖2)2   (1 − 휉3
푖3) 푤

1

푖1푤2
푖2푤3

푖3푤4
푖4         

                푥 = 푎휉1
푖1  

푥 = 푎 1 − 휉1
푖1  휉2

푖2 

  푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  휉3
푖3 

푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  (1 − 휉3
푖3) 휉4

푖4 

Integration over a 5-simplex 
Substituting n=5 in the derived formula in section 3, we get the quadrature formula for 
integrating a function on a 5-simplex as, 

푓(풙)풅푋 = 푓(푥 ,푥 , 푥 ,푥 ,푥 )푑푥 푑푥 푑푥 푑푥 푥

≈ 푐 푓(푥 ,푥 , 푥 ,푥 ,푥 ) 
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where, 푐 = 푎 (1 − 휉1
푖1)  (1 − 휉2

푖2)3  (1 − 휉3
푖3)2  (1 − 휉4

푖4) 푤
1

푖1푤2
푖2푤3

푖3푤4
푖4푤5

푖5         

                푥 = 푎휉1
푖1  

푥 = 푎 1 − 휉1
푖1  휉2

푖2 

  푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  휉3
푖3 

푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  (1 − 휉3
푖3) 휉4

푖4 

푥 = 푎 1 − 휉1
푖1  (1 − 휉2

푖2)  (1 − 휉3
푖3) 1 − 휉4

푖4  휉5
푖5 

 
Numerical Results  
In this section, we provide the numerical results of integration using the proposed method for 
various functions over different dimensional simplex.  

In the first table, we consider the constant function 푓(푥, 푦) = 1 as the integrand. The value of 
the integral over the n-simplex is  

!
.  

Table 1:Integration of 풇(풙) = ퟏ 

Dimension Exact integral value Computed value Absolute Error 
2 0.5 0.500000000000001 9.9E-16 
3 0.166666666666667 0.166666666666640 2.7E-14 
4 0.0416666666666667 0.0416666666666516 1.5E-14 
5 0.00833333333333333 0.00833333333333050 2.8E-15 

  
In the second table we take the integrand as 푓(풙) = ∑ 푥  

Table 2: Integration of 풇(풙) = ∑ 풙풊풏
풊 ퟏ  

Dimension Exact integral value Computed value Absolute Error 
2 0.4 0.399999999999480 5.2E-13 
3 0.142857142857143 0.142857142857151 8.0E-15 
4 0.0370370370370370 0.0370370370370237 1.3E-14 
5 0.00757575757575758 0.00757575757575657 1.0E-15 

 
In the last table we take the integrand as 푓(풙) =

∑
 

Table 3: Integration of 풇(풙) = ퟏ/ ∑ 풙풊풏
풊 ퟏ  

Dimension Exact integral value Computed value Absolute Error 
2 0.666666666666666 0.666666667673585 1.0E-09 
3 0.2 0.200000000004725 4.7E-12 
4 0.0476190476190476 0.0476190476190462 1.4E-15 
5 0.00925925925925926 0.00925925925929113 3.1E-14 

 
Conclusions 
The proposed integration formula is very simple at the same time very effective. The 
knowledge of the boundaries of the simplex and the generalized Gaussian quadrature rules is 
sufficient to apply these quadrature rules. Most of the results obtained here are exact up to 10 
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decimal places and the proposed method can be used to integrate a wide class of functions 
including functions with end-point singularities.  
Further developments of the present method and their applications in Science and 
Engineering fields are underway and the results will be reported in the near future. 
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