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ABSTRACT 

A linear theory thermal instability of nano fluid through a rectangular channel bounded by rigid boundaries is 

investigated. The instability equations of nano fluid through the channel are derived by using boussinesq 

approximation and Buongiorno’s model. These equations are discretized using non uniform grid points given by 

Gauss-Lobatto and then solved by using Chebyshev spectral collocation method with Chebyshev polynomials as 

basis of the solution. The generalized eigen values in terms of non-dimensional parameter such as modified 

Rayleigh number are obtained as function of wave number using QZ algorithm. The results display that the presence 

of nano particles suppresses the flow instability, but cannot absolutely get rid of it. As nano particle mass loading is 

increased, the region of unstable wave numbers is condensed from that of the pure Newtonian flow and the largest 

growth rate that governs the flow instability is reduced.  The critical Rayleigh numbers increase and the unstable 

regions of small perturbations decrease, along with a decrease in the largest growth rates that govern the flow 

instability, therefore reinforcing the flow stability. Larger particles reduce the peak value of the velocity disturbance 

and hence attenuate the flow instability. 

Keywords:Buongiorno’s model, Cunnigham slip, spectral collocation, Chebyshev polynomials, Gauss-Lobatto 

points, QZ algorithm linear stability. 

1. INTRODUCTION 

The natural convection of fluid flow through rectangular channels arises in a large 

number of fields such as natural sciences, industries, engineering and technology. These consist 

of geothermal operations, petroleum products prosessing, thermal insulation and in the devise of 

solid-matrix heat exchangers, insulating materials, compact heat exchangers, and many others. 

Because of these widespread applications, there has been aextensive development in the field of 

natural convection during recent years. The improvements which have been taken place in this 

field over the years are well acknowledged in the literature: see, for example, Nishioka(1975),E. 

S. Asmolov and S. V. Manuilovich(2009),Jianzhong Lin (2014), Lennon O Naraigh (2013), E. 

A. Chinnova and O. A. Kabova(2011). 

The stability of nano-fluid flow through bounded channels is in itself a fundamental topic 

of research due to its wide range of applications in cooling of electronic circuits, rheology and in 

enhancement of heat transfer. In particular, with the advent of nano materials there has been a 

significant increase in attention in the study of stability of nanofluid flows through rectangular 

channels bounded by a parallel plates in recent years.The result of  thisthrows light relating to 

convective transport in nanofluids by Buongiorno (2006). E. S. Asmolov and S. V. Manuilovich 

(2009) had studied the stability of a horizontal plane-channel flow of a dilute suspension is 

theoretically and shown that the action of the sedimenting particles on the flow stability 

parameters is equivalent to the effect of a distributed flow stratification. J C Umavathi(2013) had 

found that the critical thermal Rayleigh number can be originate reduced or decreased by a 

substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or 

bottom-heavy. The stability of flow of an incompressible nano fluid through a plane-parallel 
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channe has been discussed on the origin of ancorrespondence with a hydrodynamic problem by 

JianzhongLin  et. al(2014). 
 

Nonetheless, studies pertaining to the stability of natural convection in a horizontal nano 

fluid layer under the impact of nanopartical density have been almost completely neglected 

despite its relevance and importance in a number of processes that occur in industry such as the 

extrusion of polymer fluids, solidification of liquid crystals, cooling of metallic plates in a bath, 

exotic lubricants and colloidal fluids, liquids containing long-chain molecules as polymeric 

suspensions, electro-rheological fluids and so on. In view of the above observed phenomena, it is 

essential to explore the stability of natural convection of a nano fluid flow through horizontal 

channel with the plates are maintained at constant but dissimilar temperatures. The generalized 

eigenvalue problem is developed and it is solved numerically using the Chebyshev collocation 

method. 

2. MATHEMATICA FORMULATION 

The physical design of the problem is illustrated schematically in Fig.1. We consider a 

nano fluid flow through a horizontal layer bounded by rigid parallel paltes of width 2 h . The 

horizontal plates are maintained at constant temperature.A Cartesian coordinate system (x, y)is 

chosen with the origin in the middle of the horizontal layer, where the y -axis is taken 

perpendicular to the plates and the x -axis is vertically upwards, opposite in the direction of 

gravity. The plate at y h  is maintained at fixed temperature 
1

T  and while the plate at y h  is 

maintained at fixed temperature 
2 1

( )T T . The relevant basic equations under the Boussinesq 

approximation and following Buongiorno (2006)are given below: 

 
Fig. 1 Physical configuration. 
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 
0 0

1 ( )T T                      (6) 

The physical configuration considered in the present study leads to the following boundary 

conditions: 

0q Q  at y h           (7) 

1
T T at y h   and 

2
T T  at y h                           (8) 

Further to develop the eigen value problem we consider the initially the fluid flow is laminar, 

fully developed and unidirectional, thus we have the basic state in the form  
ˆ(y ) j ,

b
U V U  ( , y)

b
P P x ,    , , 1

b b b
T T y y n N                (9) 

Here the subscript b denotes the basic state. Under this circumstance, the basic state solution is 

found to be     
2

2 1
0 .0 8 3 3 3 1

b e e e a n
U R P R T y T T y      

 
 and  2 1

0 .5 .
b

T T y T T     

To understand the stability of the nano fluid flow through the horizontal channel the basic state is 

perturbed by using infinitesimally very small disturbances given by  

 0
' ,

x y
U U U u u  ,  0

' ,
x y

V V V v v  ,
b

P P P   ,
b

n N n   ,
n

T T T                      (10) 

Further the equations (1) to (6) are made non-dimensional using the scales 
b

U  for velocity of 

fluid and nanoparticals, h for the space variable,  
1

b
h U



 for time, 
3

0 .1 6 6 6
b

d N  for 

nanopartical density, T  for temperature 
0

  for fluid density and 2 1

f b
U h

  for pressure and by 

using the equation(10) and using thelinearstabilitytheory we get  
2 2

2 2

1
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x x b x x

b y b x x e e a n

e t c
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Further eliminating pressure between the equations (11), (12) and (13), (14)and by using the 

stream function formulation in the form 
x y

u  ; 
y x

u   and 
x y

v  ; 
y x

v   . we get  
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(18) 



Contributory Session 

 

 

Indian Institute of Technology, Bhubanesawar 

 

4 
 

0
b

b

nn n
u

t x y x

  
  

   
              

(19) 

2b

b

TT T
u k T

t x x y

   
   

                  

(20) 

Using normal mode solutionin the eqs (17) to (20) in the form     
( )

, , , , , , ( )
i x c t

n T n T y e


   


 , 

we get, 

     
2

2 2 2 2 2 2 21
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  0
b b

i U c n D n i                  (23) 

 
2 2

( )
b b

i U c T i D T k D T                                          (24) 

This equations are associated with the following boundary conditions: 

0 1D T n a t y                      (25) 

3. NUMERICAL SOLUTION 

Equations (21) - (24) together with the boundary conditions (25) constitute an eigenvalue 

problem. This resulting eigenvalue problem is solved numerically using Chebyshev collocation 

method. The k
th 

order Chebyshev polynomial is given by, 

     
1

co s , co s
j

y jz z y


 
                                                                                                   

(26) 

The Chebyshev collocation points are given by    co s , 0 1
j

j
y j N

N


  . Here, the right and left 

wall boundaries match up to 0j  and N , respectively. The field variables , , n  andT can be 

approximated in terms of Chebyshev polynomials as follows: 
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(27)                      

The governing equations (21) - (24) are discretized in terms of Chebyshev polynomials to get 

1 1 1 2 1 3 1 4 1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4 2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4 3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4 4 1 4 2 4 3 4 4
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      

      
      

where

   
2 2 2

1 1 2 2 b b b
A A D U c D U D D U      , 1

0 , 2 , 3, 4
j

A fo r j 
2 1

0 , 1, 3, 4
j

A j  ,

 3 3 4 4
,

b
A A U c  

3 1 3 4
0A A  ,

4 2 4 3
0 ,A A     

1 2 2

1 2 t cB z s C D 


  , 
1 3

0 ,B 

     
2

11 2 2 2 2

1 1 e t cB R D z s C D 


    ,  2 2

4 4B D   , , ,

2 3 2 4
0 ,B B 

4
0 , 1, 2 , 3

j
B j  , 3 0 , 1, 2 , 3 , 4jB j  . 

In the above equations D is Chebyshevdifferention matrix as defined in the Motsaet. al. (2019) 

and Chandra Shekara(2019). The above system of linear algebraic equations can be written in the 

following compact matrix form: 

3 2 b
A D n 

4 1 b
A D T 

1 4 e a n
B P R    

1 2 2

2 2 t c
B s C D 



  

   
1 2 2

2 1 t c
B s C D 



 
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A X c B X           (28) 

In general, 
r i

c c ic  is the complex number with being the phase velocity and  is the 

growth rate. Implimenting the boundary contions in above matrix system in the form: 

0 1 1
0

N N
D D   


    , 0

0
N

   , 0
0

N
T T  , 0

0n  .     
 

4. RESULTS AND DISCUSSIONS 

  The numerical results are presented with the main objective of investigating the effect of 

nanopartical density and on the stability of natural convection in a horizontal nano fluid layer. 

The non-dimensional parameters involved in the present study are the modified Rayleigh number

e a n
R , Stokes number 

t
S , nano particle density ration, Cunnigham slip correction 

c
C , and 

Reynolds number 
e

R . The Chebyshev collocation method is employed to extract the eigenvalues 

and the convergence of the numerical method is tested for different sets of parametric values by 

varying the order of base polynomial N and the results so obtained are tabulated in Table 1. From 

the table it is observed that four digits point accuracy can be achieved by retaining 25 terms in 

Eq. (27).  As the number of terms increased in Eq. (27), the results are found to remain consistent 

and accuracy improved up to 7 digits for . Solutions of up to 8
th

 digit could be reached by 

taking 51 terms of the approximation in Chebyshev collocation method and hence the results are 

obtained for  and for a fixed value of 1
b

N  .  

Table 1: Convergence of the Chebyshev collocation method with 1 .5
c

C  , 0 .7 5 .
e

P   

 

t
s  

z = 0 z = 50 z = 70 

ea n
R  

ea n
R  

ea n
R  

1 40.738381 31.694852 23.3412548 

5 261.299459 255.972191 253.596912 

10 532.833851 525.163845 520.760672 

  The nano particle density ratio z  and stokes number 
t

s  are found to have no control on 

the basic flow. Nonetheless, the modified-Rayleigh number
e a n

R and Reynolds number 
e

R  are 

influence the same. Figures 2(a) and 2(b), respectively, show the influence of 
e a n

R  and 
e

R on the 

basic velocity 
b

U . These figures indicate that the velocity profiles are anti-symmetric about the 

vertical line at 0y  ; however, they are not precisely centro-symmetric about 1y   . In other 

words, in the half region, the basic velocity is in one direction and in the other half it is in the 

opposite direction and it is zero at 0y  . Moreover, decrease in 
e a n

R is to suppress the fluid flow 

as it amounts to increase in the 
e

R   (Fig. 2(a)) and a similar trend is noticed with decreasing 
e a n

R  

(Fig. 2(b)). 

  The neutral stability curves in the  R ,
ea n

 - plane are displayed in Figs. 3(a, b), (c) and 

(d) for various values of z , 
t

s  and R
ea n

, respectively. In these figures, the portion below each 

neutral stability curve corresponds to stable region and the region above corresponds to 

instability. It is seen that the neutral stability curves exhibit single but different minimum with 

respect to the wave number for various values of z ,
t

s  and R
ea n

. From the Figs. 3(a) and (b) it is 

observed that the effect of increasing 
t

S  is to increase the region of stability when the instability 

is via stationary mode (Fig. 3a), while an opposite trend is noticed with increasing 
t

S  when the 

instability is via travelling-wave mode (Fig. 3(b)). Figure 3(c) exhibits that increasing Z  is to 

r
c

i
c

4 0N 

5 0N 
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decrease the region of stability. Similar effect is observed on the stability of the system with 

increasing R
ea n

 and the same is evident from Fig. 3(d). 

 

 
Fig. 2: Basic velocity profiles(a,b,c). 

 

 5. CONCLUSIONS 

From the abovementioned study, it is observed that the nanopartical density has no 

influence on the basic velocity distribution. However, the effect of increasing 
e a n

R is to introduce 

instability on the system but its effect is noted to be not so important. To the contrary, it exhibits 

a dual behavior once the instability is via travelling-wave mode. The value of 
t

s  at which the 

transition from stationary to travelling-wave instability occurs and the wavelength of the critical 

wave remain invariant for all values of
e a n

R . Moreover, the value of z increases at which 

transition from stationary to travelling-wave instability occurs as the value of 
t

s  increases. The 

streamlines and isotherms are also presented and found to mimic the behavior of stability curves 

observed before and after the change of mode of instability. 
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Fig. 3: Neutral stability curves. (a,c),  Stationary modes (b), travelling-wave modes(d). 
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