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ABSTRACT 

The current study proposes a stochastic element free-Galerkin method for the bending analysis of Euler-Bernoulli 

beam. Uncertainty in Young’s modulus is modeled by considering it as a homogenous Gaussian random field. 

Discretization of random field is performed by shape function method. Perturbation method is used to study the first 

and second order moment statistics of deflection and rotation of beams. Beams with different boundary conditions 

are solved and the results have been validated with those obtained from a Monte Carlo simulation. 

Keywords: Meshless method, Element free-Galerkin method, random field discretization, First and second-order 
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1. INTRODUCTION 

Engineering structures are subjected to high degree of uncertainties during their lifetime. These 

uncertainties are associated with material properties, geometric properties, external loads, 

boundary conditions, etc. Therefore, a stochastic analysis of structures is necessary to improve 

the knowledge on uncertainties associated with the response.  For such analysis, stochastic finite 

element method (SFEM) is widely used in literature [1,2].  However, mesh dependency in finite 

element method (FEM) can lead to issues in mapping and reduction in accuracy of the analysis 

results [3]. Meshless methods [3] are considered as acceptable alternatives in this respect [4,5,6]. 

Among different meshless methods available [3], the present study uses element free-Galerkin 

method (EFGM) [7,8] as the numerical tool due to its simplicity and comparability with FEM. 

EFGM is introduced in stochastic numerical analysis by Rahman and Rao [4]. Further, Arun et 

al. [5] used stochastic EFGM for the analysis of structural components with random initial 

damage. Later, Gupta and Arun [6] extended this method for the elastic buckling analysis of 

columns. However, bending analysis of Euler-Bernoulli beams using stochastic EFGM is not 

explored, and the current study investigates the same.                 
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2. EFGM FORMULATION FOR BENDING OF EULER-BERNOULLI BEAM 

EFGM is used as a numerical tool for the deterministic analysis of Euler-Bernoulli beam. It uses 

moving least square (MLS) [9] method for the construction of shape functions and Galerkin 

weak form to develop the discretized system of equations [3,7,8]. 

2.1 MLS shape functions 

The displacement of the problem domain is approximated as  

  ( )  ∑   ( )  ( )   
  

   ( ) ( )                                                                                               ( )         

where,  ( ) is the vector of basis functions of order   and  ( ) is the vector of unknown 

coefficients [7].  

Let the problem domain is discretized into   number of nodes. The nodal deflections and 

rotations are represented as    , ̂  ̂    ̂ -
   and     , ̂  ̂    ̂ -

  

respectively.  

The coefficient vector  ( ) is obtained by minimizing the error norm given by 

 ( )  ∑  (    ),( 
 (  ) ( )   ̂ )

  
    (  

 (  ) ( )   ̂ )
 -                                           ( )  

where,   (    ) denotes the weight function at     node. The weight function should be 

nonzero inside the support domain and zero outside the domain [7].   ( ) denotes the first 

derivative of the basis function with respect to  . Minimizing the error norm gives:  

 ( ) ( )    ( ) ̂    ( ) ̂                                                                                                               ( )  

where  ( ) is the moment matrix and W is the matrix containing weight functions at the point of 

interest. 

 ( )         
                                                                                                                           ( ) 

  [

 (    )    

  (    )   
    
    (    )

]                                                                             ( )   

Basis function    and its first derivative with respect to  ,   
  are given by 
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and the coefficient vector is given by 

 ( )     ( )  ( ) ̂   
  ( )  ( ) ̂                                                                                              ( )  

Finally, the equation for displacement is obtained as 

 ( )  ∑   
  ̂  ∑   

  ̂ 
                                                                                                                ( ) 

                                                                                                                                 

where,      and    are the MLS shape functions for deflection and rotation respectively [6, 11]. 
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Derivatives of these shape functions can be calculated as in the following equations with 
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where          
      

  [7] and          
  
      

           
          

  
   [6]. 

In order to obtain nonsingular moment matrices ( ), a sufficient number of nodes should be 

included in the domain of influence of point under consideration [6,7]. 

2.2 Formulation of the beam bending problem 

An Euler Bernoulli beam is governed by the following differential equation 

  

   
(  (

   

   
))   ( )          (   )                                                                                       (  ) 
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where   is the Young’s modulus,   is the moment of inertia,   is the transverse displacement, 

 ( ) is the force acting on the beam,   is the length of the beam and   is the problem domain. 

Applying the essential and natural boundary conditions as well as constructing the weak form 

reduces the problem into a system of algebraic equations given by 

                                                                                                                                                            (  )  

where   is the stiffness matrix;     ∫  
 

 
  
          and    is the strain-displacement matrix for 

the i
th

 node;    0
     

   
 
     

   
1    ,                   - and    is the force 

vector;   ∫   
 

 
 ( )   where,    is the matrix of MLS shape functions. Scaled transformation 

method [10,11] is used for the enforcement of essential boundary conditions.  Incorporation of 

randomness in the material property makes the problem a stochastic one and the following 

section discusses the formulation and solution of such problems using EFGM. 

3. STOCHASTIC EFGM FORMULATION 

The current study models Young’s modulus ( ) as a spatially varying random variable. It is 

considered as a Gaussian random field,  ( )    (   ( )) with    as the mean modulus of 

elasticity and  ( ) as the zero-mean Gaussian field [12]. Exponential auto-covariance kernel is 

assumed for  ( )  which is given by      
     0 .

|  |

  
/1
 

 where,   
 is the coefficient of 

variation of  ( )     is the distance between two points    and     in the problem domain and 

   is the correlation length parameter.    can be expressed as    
  

  
 where,    is the standard 

deviation of  ( ) [6,12,13]. Incorporation of  ( ) into the governing differential equation 

makes the problem a stochastic one and hence the stiffness matrix also.  However,  ( ) being a 

random field, explicit expression for the same is not available and needs to be approximated.  

3.1.Random field discretization 

Due to its simplicity and high degree of accuracy, the shape function (SF) method [2] is 

preferred for the approximation of the random field. The Gaussian random field   ( ) is 

discretized into   number of random variables and approximated as  ( )  ∑   ( )  
 
     [2] 

where,    are the nodal values of the random field which is a Gaussian random variable with zero 

mean and same covariance structure as that of  ( )   and   ( ) is the MLS shape function. 
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The stochastic beam bending problem is analyzed by first order perturbation (FOP) and second 

order perturbation (SOP) methods and the same have been validated by Monte Carlo simulation 

(MCS).  

3.2.Perturbation method 

Euler-Bernoulli beam is solved for deflections and rotations using perturbation method [12] 

which assumes the variance of the random field to be small [5]. The set of equations for 

stochastic beam bending problem described in Eq. (4) can be written as 

   ( )  ( )                                                                                                                                           (  ) 

In perturbation method, each term in the equation is expanded by Taylor’s series approximation 

and coefficients of the same order terms on both sides are equated to determine the displacement 

and its derivatives. Taylor’s series expansions for   and   about     are given by the 

following expressions.  

 ( )      ∑     
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where, ( )  ( )( ) and  ( )   
 ( )

   
 , ( )    

  ( )

      
 which are evaluated at the mean value 

of  . Expressions for         and      are obtained as follows. 

     (  )
      

    (  )
  (      )

     (  )
  ( (             )))    

}                                                                                              (  ) 

Now, expectation and variance operators are taken both sides of Eq. (14) in order to find the 

mean and standard deviation of displacements. Mean and variance for the FOP method are 

obtained as; 

       

  
  ∑       

   (       )

 

     

}                                                                                                                 (  ) 
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Mean and variance for the SOP method can be written as;  

        
 

 
∑     
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  ∑       

   (       )
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   (       )

   (       )  (       )+ }
 
 
 

 
 
 

                (  ) 

Eq. (17) and Eq. (18) are employed to determine the first and second order moment statistics 

(mean and variance) of deflection and rotation of the Euler-Bernoulli beam. These results are 

then validated using conventional MCS by taking      number of simulations [6].  

4. NUMERICAL EXAMPLES 

Material of the beam is chosen as mild steel with                    Length of the beam ( ) 

is taken as    and cross-section is circular with diameter      . Beams with following 

boundary conditions are solved.   

Case 1: Cantilever beam with uniformly distributed load (udl) over the whole span  

Case 2: Simply supported beam with udl over the whole span  

Case 3: Beam fixed at both ends and with udl over the whole span  

Case 4: Propped cantilever beam with udl over the whole span 

Value of udl is taken as      . 

These four cases are analyzed with a deterministic EFGM formulation and the results are 

compared with the available analytical solutions. Stochastic analysis is done with perturbation 

method and the mean and standard deviation for each case are then validated with MCS. Details 

of deterministic analysis and stochastic analysis for all the cases are discussed here. 

4.1. Deterministic analysis 

Deterministic analysis of beams is carried out and a convergence study is done in order to 

determine the suitable type of weight function, number of nodes and the EFGM scaling 

parameter      . Among the different weight functions (exponential, cubic as well as quartic 

splines [3]) it is found that the results are acceptable with the use of exponential weight function. 
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The number of nodes is varied from   to    and in all the cases a node number of    gives 

convereged results with the following      values (Table 1).   

Table 1. Results for deterministic analysis of beams 

 Case 1 Case 2  Case 3 Case 4  

     2.5 2.5 2 1.96 

In all the cases numerical integration is performed by two-point Gauss quadrature and a cubic 

polynomial basis function is used in the field variable approximation.  

4.2.Stochastic analysis 

Discretization of the random field is performed by shape function method which is incorporated 

in the numerical integration part where Young’s modulus (E) is modeled as a homogenous 

Gaussian random field. The mean and standard deviation of displacements for each case of 

beams are determined using FOP and SOP. These results are then compared with the MCS.  

Value of coefficient of variation of Young’s modulus (  ) is taken as    . Correlation length is 

fixed as  . For simplicity, the number of discretization points for the random field is kept the 

same as the number of nodes used in EFGM [12].  

4.2.1 Computational time 

Perturbation method is compared with MCS in terms of computational time required. The 

normalized computational time required for stochastic analysis using both the perturbation 

method and MCS is listed in Table 2.  

Table 2. Comparison of computational time of MCS and perturbation techniques 

 Computational time (seconds) 

MCS 
Perturbation method 

(FOP and SOP) 

Case 1        ×    3 
Case 2        ×    3  
Case 3        ×    3 
Case 4        ×    3 

Since the second derivative of the stiffness matrix is absent in the formulation, there is no 

distinction on the computational time requirement of FOP and SOP. 



Contributory Session 
_____________________________________________________________________________________________ 

_____________________________________________________________________________________________ 

Indian Institute of Technology, Bhubanesawar 

 

8 

From Table 2, it is very clear that the perturbation technique gives faster (about     times) 

converged results compared to that of MCS in the case of Euler-Bernoulli beam.  

4.2.2 Mean and standard deviation along the axis of the beam 

The mean and standard deviation of deflection and rotation of beams with different boundary 

conditions are studied using FOP, SOP and MCS.  Figure 1 shows the variation of the mean as 

well as the standard deviation of deflection and rotation of beams along the beam axis for case 1.  

Figure 1. Variation of mean and standard deviation along the axis of the beam for case 1 

 

From figure 1, it is seen that the mean deflection and mean rotation vary along the beam axis in a 

similar fashion as that of the deterministic analysis. It is also observed that the mean and the 

standard deviation of deflection and rotation determined using perturbation methods are 

comparable with those obtained from MCS. This variation of deflection and rotation are plotted 

for all the other cases also as shown in figure 2 to figure 4. 

Figure 2. Variation of mean and standard deviation along the axis of the beam for case 2 
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Figure 3. Variation of mean and standard deviation along the axis of the beam for case 3 

Figure 4. Variation of mean and standard deviation along the axis of the beam for case 4 

From figure 2 to figure 4, it is found that the mean deflection and the mean rotation show a 

similar variation as that of the deterministic analysis for the particular boundary condition. The 

resulting mean and standard deviation of FOP and SOP are found in good agreement with those 

obtained from MCS and which proves the EFGM to be an effective tool for the stochastic 

analysis of Euler-Bernoulli beam.  

A parametric study is conducted in order to study the effect of coefficient of variation and 

correlation length of the input random field on the mean and standard deviation of deflection and 

rotation of beams and the same have been discussed here.  

4.2.3 Mean and standard deviation with coefficient of variation of random field 

Keeping the correlation length as   and the number of random variables as   , the coefficient of 

variation of the input random field is varied from    to    . For all the cases, variation of first 

and second moment statistics with coefficient of variation of random field is studied. Figure 5 

shows this variation for case 1. A point which is located at      from the left end of the beam is 

considered for the study.  
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Figure 5. Variation of mean and standard deviation with coefficient of variation for case 1 

 

From figure 5, it can be seen that the results of MCS and perturbation methods are comparable 

when the coefficient of variation of random field is within     and acceptable variation is 

observed till 15%. After this 15% of the coefficient of variation, perturbation result deviates 

away from those obtained from MCS. Since the second-order derivatives of the stiffness matrix 

and force matrix are absent in this particular problem, there is no variation in the mean and the 

standard deviation among the results of both FOP and SOP.  

4.2.4 Mean and standard deviation with correlation length 

For the coefficient of variation of     and the number of random variables   , the correlation 

length is varied from     to  . The variation of the mean and the standard deviation are plotted 

for case 1 as shown in figure 6. In this case also, the point under consideration is located at      

from the left end of the beam. 

 

Figure 6. Variation of mean and standard deviation with correlation length for case 1 

From figure 6, it can be observed that stochastic EFGM gives accurate results regardless of the 

correlation length of the input random field.  
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5. CONCLUSIONS 

Bending analysis of the Euler-Bernoulli beam has been carried out using stochastic element-free 

Galerkin method. Randomness in material property is incorporated by treating Young’s modulus 

of the material as a homogenous Gaussian random field. Shape function method is utilized to 

discretize the random field. Numerical examples of beams with four different boundary 

conditions are solved - cantilever beam, simply supported beam, fixed beam and propped 

cantilever beam.  

A convergence study with deterministic analysis has been done and suitable type of weight 

function, EFGM scaling parameter (    ), number of nodes etc. are selected for each type of 

boundary condition. First and second moment statistics of deflection as well as rotation are 

studied using first order and second order perturbation methods and the same have been 

validated using MCS. Results of perturbation method are found in good agreement with that of 

MCS.  

Further, from the comparison of computational time, it is found that both the FOP and SOP are 

around     times faster than MCS. Thus it makes EFGM an efficient tool for stochastic analysis 

of beams. Parametric study is conducted in order to find the effect of coefficient of variation of 

random field and correlation length of the same on the mean and standard deviation of deflection 

and rotation of beams. It is found that the stochastic EFGM gives better results of first and 

second moment statistics when the coefficient of variation of random field is less than      

whereas the results are not affected by the correlation length of the input random field.  
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