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1 Abstract 
 

In the present paper, the study has been performed in an irregular earth crust, layered over a semi-infinite half- 

space under the effect of gravity. The irregularities at the interface are possible combinations of geometric shapes 

such as rectangular, parabola and triangular notch. The aim of the study is to come up with the influence of these 

irregularities on the phase velocity of shear horizontal waves.   The current work also indulges with the outcome     

as to how inhomogeneities leave a remarkable effect on SH-wave propagation. The medium has been assumed to 

exhibit inhomogeneities as the function of depth. These functions are the product of linear algebraic function and 

exponential function of depth. By means of separation of variables and substitution method, the equation of motion has 

been reduced to the Hypergeometric equation. Suitable boundary conditions have been employed to derive a closed 

form of dispersion equation. Numerical computations have been performed to visualize the impact of irregularity 

and inhomogeneity. It has been observed that irregular interfaces and inhomogeneity involved in the medium has a 

significant bearing on SH-wave propagation. 

Keywords: Hypergeometric function, laguerre function, SH-wave, inhomogeneity, irregular interface. 
 

 
2 Introduction 

 
The materials which show viscous as well as elastic behavior while undergoing deformation are viscoelastic materi- 

als, have viscosity factor and time-dependent strain rate. Also, energy is dissipated as heat on applying a load on 

viscoelastic materials, therefore used for isolating vibration, reducing noise and absorbing shocks. From a geological 

point of view, the behavior of earth is assumed to be like an ideal elastic or viscoelastic material. Therefore, keeping 

in view the viscoelastic behavior of the layered earth, it is of great concern to study the propagation of SH-wave at  

an interface between an inhomogeneous viscoelastic layer and inhomogeneous gravitating half-space, which will have 

importance in solid mechanics, seismology and civil engineering. 

Several studies have been done on the transmission of plane seismic waves in viscoelastic materials. Cooper [1] 

explained the transmission and reflection of plane shear waves at the interface of two linearly viscoelastic layers. Shaw 

presented a method for calculating stresses and displacements caused by a plane wave passing through a layered 

viscoelastic substratum and explained the fact that interface waves can exist in a viscoelastic layer under an elastic 

mailto:kaurrupinderjit29@gmail.com


2  

half-space if the layer is pseudo-elastic [2]. Bhattacharya [3] provided a particular solution for SH-wave equation for a 

few inhomogeneities in terms of Bessel, Whittaker, Exponential and Hypergeometric functions. Schoenberg, Borcherdt, 

Lockett [4]–[6] explained the reflection and transmission of plane waves in layered inhomogeneous viscoelastic media. 

Whereas, Gogna [7] explained the propagation of SH-waves through an anisotropic inhomogeneous elastic half-space 

lying over viscoelastic half-space.Kanai explained the effect of solid viscosity of surface layer on earthquake movements 

[8]. 

In viscoelastic materials, slowness vector (v = P + iA) is complex-valued having P and A as propagation and 

attenuation vectors. The plane wave is called inhomogeneous for nonparallel propagation and attenuation vectors. 

Cerveny [9] discussed inhomogeneous harmonic waves in viscoelastic anisotropic media. She provided three approaches 

directional, componential and mixed specification to determine the slowness vector of an inhomogeneous plane wave in 

a viscoelastic medium. Wang [10] provided an analytical solution for phase velocity of body wave in an inhomogeneous 

transversely isotropic material whose Young’s modulus, shear modulus and density vary according to the generalized 

power-law model (α + βz)n, where α and β are inhomogeneous parameters and coordinate z is along the depth of 

earth. 

The boundaries of the earth’s media are not regular because of mountain basins, mountain roots, ore bodies and 

rocky materials.  The irregular surface of crustal layers of the earth affects the elastic wave  propagation and plays    

a vital role in the energy distribution of reflected and refracted seismic waves. Therefore, it is of great concern to 

study the propagation of elastic waves at various types of imperfect interfaces of earth’s media. Many authors have 

investigated seismic waves at irregular boundaries of earth’s crustal layers. For example, Guoquan Nie [11] explained 

the propagation of SH-wave in piezoelectric–piezomagnetic bilayer system with an imperfect interface. Tomar [12] 

studied SH-waves at an irregular interface between a dry sandy half-space and an anisotropic elastic half-space. Chat- 

topadhyay [13] investigated about reflection and refraction of plane quasi-P waves at a corrugated(imperfect) interface 

between distinct triclinic elastic half-spaces. Vishwakarma explained the torsional wave propagation in the earth’s 

crustal layer under the influence of imperfect interface [14]. 

It was explained by Bullen [15] that the density inside the earth varies at different rates. He has also approximated 

the density law inside the earth varies quadratically (in-depth parameter) for 413 Km to 984 Km depth. Ongoing 

further towards the central core (> 984 Km), density varies as a linear function of depth parameter. Various attempts 

of variations for density inside earth such as linear, quadratic, harmonic as well as exponential have been made on the 

basis of Bullen’s theory. For example, a hyperbolic variation of density has been taken by Sari and Salk [16]. Dey and 

Mukherjee [17] considered love waves in a granular medium over elastic half-space under hydrostatic initial stress due 

to gravity. Singh et al. [18] studied torsional surface wave propagation in a fiber composite layer lying over an initially 

stressed viscoelastic half-space. Sahu [19] investigated the propagation of SH-waves in a heterogeneous fiber-reinforced 

medium over a heterogeneous half-space under gravity. Chattopadhyay et al. [20] explained the propagation of shear 

waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces. He considered 

the irregularity in the surface as rectangular in shape. Vishwakarma et al. [21] studied the propagation of SH-wave in 

linearly varying fiber-reinforced viscoelastic composite structure under initial stress. Refernces may be given to Fang 

et al. [22] and Li et al. [23] in the field of SH-wave propagation. 

The present paper attempts to study the possibility of SH-wave in an inhomogeneous visco-elastic layer over inho- 

mogeneous half-space having different irregular interfaces. The materials inside the earth are anisotropic with elastic 

parameters that vary with orientation. Therefore, keeping in mind the anisotropy of the earth’s crustal layer  and  

the half-space, the rigidity and the viscosity has been taken as the product of a linear function and an exponential 
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function of depth, while density varies exponentially along with the depth. As the boundary of earth can never be 

flat throughout but are always irregular up to some extent. The roughness or irregular undulation of the boundary 

surface place an important role in the energy distribution of reflected and refracted waves. These irregular geologies or 

corrugated surfaces are made up of many geometrical shapes such as rectangular, parabolic and triangular notch. As 

the analytical treatment of irregularities of the surface entails formidable mathematical difficulties, we have considered 

possible combinations of the geometrical shapes i.e., Rectangle, parabola, triangular notch to come out with most 

promising irregular surface of different types. Method of separation of variables has been employed to derive the dis- 

persion equation for the propagation of SH-wave. It has been observed that SH-wave transits in considered geometries. 

The graphical illustrations have been made to examine the effect of the various inhomogeneity parameters. Modelling 

SH-wave propagation in irregular geologies are helpful in forecasting geophysical parameters at greater depth through 

signal processing and seismic data modelling[24]. This study can also be applied to enhance our knowledge about the 

earth’s structure. 

 

3 Formation of Problem 
 

We considered an inhomogeneous viscoelastic layer of finite thickness {H ≤ z ≤ sh(x)} over an inhomogeneous half- 

space {sh(x) ≤ z < ∞} with imperfect interface. The x-axis and the z-axis of co-ordinate system(x, y, z) have been 

taken along the direction of propagation of wave and towards the core of earth respectively. The origin O of the 

coordinate system has been taken such that imperfect interface is symmetrical about OZ. By keeping in mind the 

real scenario of earth, 6 kinds of imperfect interfaces of layer and half-space have been considered, and each imperfect 

interface is divided into two  parts each of height H1 and H2 towards z-axis and have  a span of length 2s on x-axis    

as shown in figure. These imperfect interfaces are a combination of the geometrical shapes rectangular, parabolic and 

triangular notch. The equation of imperfect interface is given by the function 

 

z = s h(x) (1) 

 
The imperfect interfaces for 6 different geometries defined by h(x) are given below and shown in figure (1). 
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4 Derivation of Dispersion Equation 
 
4.1 Solution for inhomogeneous viscoelastic layer 

 
The motion of particles of inhomogeneous viscoelastic layer caused by SH-wave, which is propagating in the x-direction 

and producing displacement in the y-direction, is represented by Biot [25] as 

 

∂ ∂ ∂
2
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∂z 
Syz = ρ 

∂t2 
(2) 

where Sxy = (µ + ν 
∂
 ) ∂v

 and Syz = (µ + ν 
∂
 ) ∂v

 are the shear stresses. And ρ, µ and ν are the density, elastic, 
∂t  ∂x ∂t ∂z 

viscosity parameters of the earth’s crustal layer. 

By using the above stress-displacement relationships, equation (2) reduces to 
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By using separation of variables method, we assume that 

 
v  = V (z)e

i(ωt−kx)
 (4) 

 

Equation (3) reduces to  
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where P = µ + iων and i = 
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Assuming the variations in rigidity (µ), viscosity (ν) and density (ρ) of the upper layer as the functions of depth   

µ = µ0(1 − az)e
dz

, ν = ν0(1 − bz)e
dz

, ρ = ρ0e
dz. Where µ0 , ν0 and ρ0 are the values of rigidity, viscosity and density 

respectively at the regular interface of layer and half-space. And a, b, d are the real inhomogeneity parameters having 

dimensions of the inverse of length, associated with rigidity, viscosity and density of viscoelastic layer. 

On applying above variations, equation (5) reduces to 
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where c0 = µ0 , is the velocity of the shear wave of a homogeneous isotropic elastic medium, whose density is ρ0 and 

modulus of rigidity is µ0. 

Solution of equation (6) is 

V (z) = ea4z {c1U (a5, 1, a6 + a3z) + c2L(−a5, a6 + a3z)} (7) 

where U (α, β, z) is the Hypergeometric function and L(α, β, z) is the Laguerre function. From equation (4), the 

displacement equation for viscoelastic layer is given by 

v(z)  =  ea4z {c1U (a5, 1, a6 + a3z) + c2L(−a5, a6 + a3z)}ei(ωt−kx)
 (8) 

where c1 and c2 are arbitrary constants and expressions for a1, a2, a3, a4, a5 and a6 are given in appendix. 

4.2 Solution for half-space 
 

The equation of motion for half-space under gravity as given by Biot [25] is 
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where λ , µ are rigidity constants of half-space. δxy and e are the Kronecker delta and the cubical dilatation of the 

medium. 

On using above relations, equation (9) reduces to 
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The solution of equation (10) may be assumed as 
 

v = V (z)e
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 (11) 

 

On substituting (11) in (10), we get 
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Assuming, the rigidity and the density of the half space as 

 
µ = µ1(1 − lz)e

mz
,  ρ = ρ1e

mz
 

where l and m are real numbers having dimensions of inverse of length. On implementing above variations, equation 

(12) reduces to 
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Solution of equation (13) is given by 
 

V (z) = e
−l3z (c3U (l4, l5, l6 + l7z) + c4L(−l4, l5 − 1, l6 + l7z)) (14) 

Ongoing towards the center of earth, the displacement caused by propagating wave vanishes.  i.e.  v(z) → 0 as z → ∞ 

therefore, 

V (z) = c3e
−l3z U (l4, l5, l6 + l7z) (15) 

 
From equation (10), the displacement of particles in half-space is 

 
V (z) =  c3e

−l3z U (l4, l5, l6 + l7z)e
i(ωt−kx)

 (16) 

where c3 is arbitrary constant and expressions for l3, l4, l5, l6 and l7 are given in appendix. 

 

5 Boundary Conditions and Dispersion Equation 
 

(i) The stress is vanishing at free surface z = −H, therefore 

.
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v0 = v1,  z = sh(x) 
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(iii) The continuity of stress at z = sh(x) requires that 
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Using boundary condition (i)-(iii), we have 
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For a non-zero solution of system of equations (17)–(19), we must have 

 
a11 a12 0 

a21 a22 a23   = 0 (20) 

a31 a32 a33 

 
Equation (20) gives the dispersion equation of SH-wave in heterogeneous viscoelastic earth crust lying over an inho- 

mogeneous semi-infinite substratum. 

(The expressions for a11, a12, a21, a22, a23, a31, a32, a33 are given in appendix.) 
 
 

5.1 Special Case 
 

When inhomogeneity and viscosity parameters vanish (a = b = d = l = m = 0,  ν0 = 0),  and the interface becomes  

flat (h(x) = 0), then equation (20) reduces to classical Love wave equation [26]. 
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6 Numerical Calculation and Discussion 
 

To illustrate the impact of irregular interfaces and the inhomogeneities on SH-wave propagation, numerical simulation 

has been performed for equation (20). The graphs have been plotted for non-dimensional phase velocity c
2

 

0 

against 

non-dimensional inhomogeneity parameters such as aH, bH, dH, lH and mH. In order to plot the graphs following 

numerical values have been used (Gubbins [27]). 

Layer: µ0 = 6.02 × 10
10

N/m
2
, ρ0 = 3364Kg/m

3
 , µ0 = 10s

−1
 

Half-Space: µ1 = 7.45 × 10
10

N/m
2
, ρ1 = 3293Kg/m

3
 , ρ1g = 0.5 

For figure no.  2, 3 and 4:  bH = 0.5,  dH = 1,  lH = 1,  mH = 0.4 

For  figure no.  5, 6 and 7:  aH = 0.5,  dH = 1,  lH = 1,  mH = 0.4 

For figure no. 8, 9 and 10: aH = 0.5, bH = 1, lH = 1, mH = 0.4 

For figure no. 11, 12 and 13: aH = 0.5, bH = 0.5, dH = 1, mH = 0.4 

For figure no. 14, 15 and 16: aH = 0.5, bH = 0.5, dH = 1, lH = 0.4 

Also, for all graphical presentations the values of kH and s have been taken as 0.5 and 1 throughout the paper. 

− 1c µ0 
2 
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2 µ1 
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As the curves are identical for positive and negative x-axis due to the symmetry of imperfect interfaces about z-

axis, therefore positive x-axis has been considered for graphical illustrations. This is to be noted that there are 6 

different types of irregularities shown in figure no. 1, in which irregularity type I and II, irregularity type III and IV 

and irregularity type V and VI are just exchange of shapes upside down. 

For figure no. 2, 3 and 4, graphs have been plotted for phase velocity against inhomogeneity parameter aH. In 

figure no. 2, It has been observed that the curves are monotonically increasing for positive values of aH, while it is 

monotonically decreasing for negative values of aH. At a particular value of aH, the velocity drops down as we move 

away from the origin towards the direction of wave propagation. At  aH  = 0,  the inhomogeneity in the rigidity of  

the crustal layer is only due to the presence of the exponential function, leading to higher curvature with remarkable 

influence. It has also been noticed that the magnitude of the velocity is asymmetric or left most skewed due to the 

contribution of exponential inhomogeneity. Figure no. 3 and 4 have been plotted for the same cause as figure 2, except 

the fact that it is plotted for irregularity type III and IV and irregularity type V and VI. However, it can be easily 

noticed that the bunch of curves is shuffled due to the change in the shape of irregularities as per their influences and 

the coordinates. 

Similarly, figure no. 5, 6 and 7 show the impact of bH. Due to the abnormal behavior of wave front near bH = 0, 

only positive real values of bH have been considered. The figures are self-explanatory to differentiate the fluctuation 

for different sets of irregularities. The pattern being uniform throughout shows that the influences are similar, but 

velocities are numerically diverted. 

The influence of the parameter dH associated with density, rigidity and viscosity on the phase velocity of the SH-

wave is depicted by the figures no. 8, 9 and 10. The curves follow the same trend in all the three figures. However, the 

consistent shifting of curves has been observed in all three figures as the shape of irregularity has been swapped. It 

also has been found that the phase velocity decreases as the value of dH increases from -1 to 0. While the effect is 

reversed when dH varies from 0 to 1. 

Figure no. 11, 12 and 13 reflect the effect of the inhomogeneity parameter lH involved in the rigidity of half-space. 

As the horizontal axis of lH increases from -1.5 to 1.5, the velocity decreases consistently. One can also notice that as 

the rigidity of the half-space decreases, the velocity of the wave also decreases. Unlike previous figures, the slope of 

the curves are negative throughout, thereby showing a significant effect of irregularity and inhomogeneity. 

Keeping the same fashion intact, figures no. 14, 15 and 16 have been plotted to show the influence of parameter 

mH. It has been observed that the phase velocity decreases gradually and at a slow rate as compared to all the above 

figures. 

The effect of irregularities of the interface on the phase velocity of SH-wave is examined by comparing curves 1-6 

associated with interfaces I-VI in figures 2-16, it is observed that as the depth of irregularity along z-axis is increased, 

the velocity of wave is also increased for any particular value of each parameter(aH, bH, dH, lH, mH) associated  

with rigidity, viscosity and density of crustal layer and half-space. 

 

7 Conclusion 
 

The transmission of SH-wave in heterogeneous viscoelastic earth’s crustal layer with irregular surface lying over 

heterogeneous half-space has been investigated analytically. The closed form of the dispersion equation has been 

obtained. Following points have been concluded based on the influence of the irregularities and inhomogeneities of the 

crustal layer and half-space. 
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1. The velocity of the SH-wave increases rapidly, as we increase the magnitude of the rigidity of the layer. Which 

is in accordance with the law that velocity of the shear waves is directly proportional to the rigidity of the material. 

2. The phase velocity of SH-wave decreases as the viscosity of the crustal layer increases, which follows the viscosity 

law. 

3. The phase velocity of SH-wave decreases on decreasing the magnitude of the rigidity of half-space. 

4. It can also be concluded that the phase velocity of SH-wave is inversely proportional to the density of half-space. 

5. The dependence of velocity on the functions that govern the irregularity of the interface has been shown. It 

has been found that the penetration of SH-wave fluctuates as it passes through the different geometrical regions. The 

velocity of the wave is affected not only by the depth of the irregularity but also depends on the geometry of the 

irregular interface of the layer and half-space. 

This finding is unique and fills the gap in the existing literature. Although the corrugation in the interface may not 

exist exactly the same as it appears in the paper, but it may be helpful to explore about crustal and sub-crustal regions 

of the earth where the interfaces are likely to vary according to the geometry presented here. The above results can be 

of great importance for geophysical applications in the propagation of SH-wave in the earth’s crust with an irregular 

surface. It can be helpful in predicting geophysical parameters of the earth’s core through seismic data analysis and 

signal processing. 
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Figure 1: Geometry of problem with 6 different types of irregular interfaces. 
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Figure 2: Dimensionless phase velocity against 

dimensionless aH for irregularity type I and II 
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Figure 3: Dimensionless phase velocity against 

dimensionless aH for irregularity type III and 

IV . 
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Figure 4: Dimensionless phase velocity against 

dimensionless aH for irregularity type V and  

VI . 

Figure 5: Dimensionless phase velocity against 

dimensionless bH for for irregularity type I and 

II . 
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Figure 6: Dimensionless phase velocity against 

dimensionless bH for irregularity type III and 

IV . 

 

Figure 7: Dimensionless phase velocity against 

dimensionless bH for for irregularity type V and 

VI . 
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Figure 8: Dimensionless phase velocity against 

dimensionless dH for for irregularity type I and 

II . 

 

Figure 9: Dimensionless phase velocity against 

dimensionless dH for irregularity type III and 

IV . 
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Figure 10: Dimensionless phase velocity against 

dimensionless dH for for irregularity type V and 

VI . 

 

Figure 11: Dimensionless phase velocity against 

dimensionless lH for irregularity type I and II 
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Figure 12: Dimensionless phase velocity against 

dimensionless lH for irregularity type  III and 

IV . 

 

Figure 13: Dimensionless phase velocity against 

dimensionless lH for irregularity type V and VI 

. 

 

 

 

 

 

 

 

 

 

 
9.5 9.5 

 
 

9.0 9.0 

 
4 

 
8.5 8.5 1 

2 

 

8.0 8.0 
3
 

 

5 
        1:xK=0.05 

7.5 7.5  2:xK=0.20 III 6
 

3:xK=0.35 

  4:xK=0.20 

     5:xK=0.35  IV 
7.0  

-4 -2 0 2 4 

mH 

7.0 6:xK=0.45 

-4 -2 0 2 4 

mH 

 
 

Figure 14: Dimensionless phase velocity against 

dimensionless mH for irregularity type I and II 
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Figure 15: Dimensionless phase velocity against 

dimensionless mH for irregularity type III and 

IV . 
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Figure 16: Dimensionless phase velocity against 

dimensionless mH for irregularity type V and  

VI . 
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