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ABSTRACT. The fabrication industry for micro-device technology in the chemical industry and 

biomedical instrumentation have grown up day by day. The fabrication process is becoming a 

tremendously challenging job for keeping the low price of devices and efficient performance. 

However, entire surfaces are typically heterogeneous, and microchannels with heterogeneous surfaces 

are commonly observed due to fabrication defects, material impurities, and chemical adsorption from 

solution. Such surface heterogeneity causes a non-uniform surface potential along the microchannel. In 

this paper, a theoretical investigation on the heat transfer characteristic of electrokinetic flow through a 

heterogeneous circular microchannel in magnetic field presence has been examined. The influence of 

the Hall Effect has been considered in this problem. Behavior in a circular microchannel with non-

uniform surface potentials has been considered and analyzed. The analytical solution for the potential 

and numerical solution for the velocity distribution and temperature distribution has been obtained. 

The Hall Effect due to the heterogeneous surface on the non-uniform potential, velocity has been 

examined. Further, the joule heating parameter effect on heat transfer is discussed. 
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1 Introduction 

The electrokinetic effects in the electric double layer (EDL) at the solid-liquid interface 

have been employed to develop various chemical and biomedical instruments [1-4]. The 

researchers study these phenomena' alleviating properties to manufacture a cheaper way 

with more precise microdevices like efficient micromixers, micro heat exchangers, and 

micropumps [5]. These components are needed to fabricate for recent technology 

microelectromechanical systems (MEMS), lab-on-a-chip devices, and high-performance 

cooling systems with a liquid as the working fluid, due to the inefficiency of the 

conventional air strategy [6] and large heat generation of microelectronic devices [7]. 

The fabricating of these devices is one of the great challenging tasks. The uniformity of 

surface during the electrokinetic fluid transport in the microchannels has been assumed 

in most problems [8 -9]. Nevertheless, it is interesting to note that the surface 

heterogeneity can quickly originate from fabrication defects or chemical adsorption onto 

microchannels. The relationship between protein adsorption and streaming potentials has 

been investigated by Norde et al. [10]. Analytical solution for electroosmotic flow 

through inhomogeneous charged surfaces is studied by Ajdari [11-12]. Ren and Li [13] 

numerically examined electroosmotic flow in heterogeneous circular microchannels with 

the surface potential's axial variation.  



This present work investigates the effect of the magnetic field on the hydrodynamic 

characteristics of electroosmotic flow in a heterogeneous circular microchannel. In this 

study, a hydrodynamically fully developed mixed electroosmotic and pressure-driven 

flow in a circular microchannel being fabricated utilizing two different materials 

circumferentially has been considered in the presence of a magnetic field. Two different 

values of the zeta potential are assumed to model this problem. It is interesting to note 

that the governing non-dimensional equations for momentum and energy have been 

solved using numerical techniques. The velocity distribution, temperature distribution, 

and average velocity have been examined with various applied magnetic fields and other 

physical parameters. A comparison study has been illustrated to magmatic field effect 

and surface heterogeneous properties. 

2 Problem Description and Mathematical Modelling 

The electron magnetohydrodynamic (EMHD) flow performance of a pressure-driven flow in 

a heterogeneous circular microchannel with radius   is considered, which is to be 

circumferentially a composition of two different materials so that there are two different zeta 

potential values as shown in the figure-1, the one part of the wall composed of a material 

which is covered an angular degree of    and the rest part of the wall composed of another 

material which is covered the remaining (     )  For the sake of generality, in this 

investigation,   is considered as a variable and assumed that the flow is hydrodynamically 

fully developed flow of a Newtonian fluid. The electrolyte solution generates an EDL near 

the boundary wall, and the induced electric field in the opposite axial direction creates an 

electroosmotic flow. In the radial direction, the electromagnetic field is induced by the 

applied magnetic field and electric field. The polar, cylindrical coordinate (     ) is 

considered to describe this flow problem's governing equations. The total system is subjected 

to an applied magnetic field    perpendicular to the fluid flow direction, and    is imposed 

as an external transverse electric field from outside to inside. 

 

Fig-1: Physical sketch of the microchannel cross-section. 

 



2.1. Potential distribution 

The electroosmotic body force is proportional to the net electric charge within the liquid, 

which itself is a function of the ionic distribution.  The first step of the present modeling is to 

obtain the electric potential distribution governed by the Poisson equation. Substituting for 

the net charge density in the Poisson equation using the Boltzmann distribution, assuming a 

solution with types of ionic species, the equation governing the electric potential distribution 

becomes  

     
  

 
             (1) 

where    denotes the electric potential,    represents the liquid permittivity, and    denotes 

net charge density, which is expressed by the given equation
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where    represents the ion density,   is the valance,    denotes the Boltzmann constant. 

Here T represents the absolute temperature, and   is the permittivity of the fluid.  

Since   is too much small, so(    (   ))    , the term     (    (    ))  can be 

estimated by (    (    ))  This principle is cognized as Dybye-H ̈ckle linearization. After 

executing this Dybye-H ̈ckle linearization, finally, we rewrite that linearized Poisson 

equation using equ. (2): 
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 is Dybye-H ̈ckle parameter and    be the thickness of the EDL. The 

simplified form of the non-dimensionless electric potential equation and the pertinent 

boundary conditions can be written as  
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, and     . Here         , is the ratio of the zeta potentials of the 

two-channel parts,   is called the dimensionless electrokinetic width, and H is the Heaviside 

step function. 

Using the separation of the variable method, the solution of potential distribution becomes 
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where    
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 and    and    are the modified Bessel functions of 

the first kind with order zero and order   respectively. 

 



      2.2. Velocity Distribution: 

 The momentum equation for the Electromagnetohydrodynamic flow in a heterogeneous 

circular microchannel is written as a modified form of the Navier Stokes equation, which 

includes the combined electromagnetohydrodynamic body force (   ⃗⃗      ⃗⃗ ) where  ⃗⃗  is 

called electric field and  ⃗⃗  is the applied magnetic field. The current density (  ) and the 

Lorentz force both are affected by the Hall current. By considering hall current, the current 

density (  ) may be written as 

    
  

   
(    ⃗⃗ )    ( ⃗⃗   ⃗⃗   ⃗⃗ ),                       (7) 

where   be the fundamental charge of an electron,    is the number density of free electrons. 

Hence, for fully developed flow, the simplified form of the momentum conservation equation 

along the z-direction is derived as: 
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where    denotes the axial velocity,   is the pressure,   is called the permeability of the 

porous medium.         (    ) denotes the Hall parameter. The boundary conditions can 

written as  

    at      ,     at     , 
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Substituting the value of    in equation (8) from equation (2) and introducing the 

dimensionless variables which are as follows: 
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Hence, the dimensionless velocity distribution is derived as 
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where     is the Helmoholtz-Smoluchowski velocity with characteristic electric field 

strength   ,    represents Darcy number,    represents Hartmann number which is 

indicating the strength of the applied magnetic field   ,   represents the strength of the 

transverse electric field   . After non-dimensionalization, the boundary conditions reduce to 

as follows: 
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By solving the equation (10) subject to the boundary condition (11), we can find the 

dimensionless velocity distribution. Further, the dimensionless average velocity can be 

obtained as 
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2.3. Temperature Distribution: 

The governing equations of energy equation for thermally fully developed flow is expressed as 
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where,   is the local temperature of the liquid, and   is the thermal conductivity of the fluid and (   ) 
is called the heat capacity per unit volume of the fluid. Here the last two terms indicate the volumetric 

heat generation due to the applied body force. The boundary condition associated with equation (13) 

read 
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where    and    are the inward wall heat flux of part 1 and 2, respectively. Introducing the non-

dimensional temperature    
 (    )

   
  where    is the channel wall temperature and    is the 

constant wall heat flux. Further, for thermally fully developed flow under imposed constant wall heat 

flux, one may write 
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   in which    is the bulk mean 

temperature. The overall energy balance of an elementary control volume of the fluid with the length of 

duct    gives the following expression: 
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Then the bulk mean temperature gradient can be obtained as 
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Where    
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 which is called axial mainstream velocity. The following dimensionless parameters are 

introduced to make dimensionless the equation (13)  
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Where   is the ratio of the heat generated by the interaction of the electric and magnetic fields to heat 

conduction,    is the Brinkman number, which describes the ratio of heat produced by viscous 

dissipation and heat transport by molecular conduction,    is the joule heating due to heat conduction. 

Then by using (15), the non-dimensional form of the equation (13) is obtained as 
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The corresponding non-dimensional boundary conditions are expressed as 
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where          is the heat flux ratio. Further, equation (17) is solved numerically and 

obtained the dimensionless temperature distribution. 

3 Results and Discussions 

The differential equation (10) and (17) subject to the boundary conditions (12) and (18) 

respectively has been evaluated numerically which is conducted in Mathematica-12 NDSolve 

algorithm and the average velocity is evaluated by using numerical integration method. The 

results are visualized graphically for the influence of the pertinent parameters in fig-2-6. 

Figure 2 display the potential distribution for various values     (the ratio of the zeta 

potentials of the two channel parts). Most interesting that the dimensionless potential 

distribution is very much affected by the zeta potential ratio and it is visible near to the 

channel wall.  

 

 

 

(a)                                        (b)                                            (c)      

Fig-2: Potential distribution plots for different    with            

The dimensionless average velocity plots for the variation of different parameters are given 

in figure 3-6. The dimensionless average velocity with dimensionless Debye-Huckel 

parameter ( ) at different values of other parameters are illustrates in fig-3. The average 

velocity generally increases with the increment of    and the zeta potential ratio, which is 

displayed in fig-3(a).  The increasing trend occurs because of the concentration of the body 

force near to the channel wall due to electroosmotic effect. Figure-3(b) depicted that the 

average velocity decreases with increases of Hartmann number. The magnitude of the 

Hartmann number indicates the strength of the applied magnetic field, which is acting as a 

Lorentz force on the fluid particles. The fluid velocity reduces because of the Lorentz force, 

which is acting as retarding force on the flow. It also can be found from Figure 3(c) that the 

average velocity is decreasing with increasing Darcy number Da when other physical 

parameters are constant. The porosity of the circular microchannel reduces the velocity of 

fluid flow. So when Darcy number increases, the permeability of the porous medium 

increases, which causes a decrease of the average velocity of a fluid. The impact of the Hall 

parameter on the average velocity with   can be found in figure 3(d). This figure shows that 

as the Hall parameter increases, the average velocity of the fluid is reduced. The physics 

behind this observation is that the electrical conductivity of the fluid reduces as the Hall 

parameter increases and thereby, the applied magnetic field effect reduces the fluid velocity.  



 

 

                                 (a)                                                                              (b) 

 

                                 (c)                                                                              (d) 

Fig-3: Avg. Velocity vs   plots for different values of   , (b) for different values of Da and (c) for 

different values of Hall parameter, (d) for different values   , while keeping   
 

 
             

 
                                         (a)                                                                              (b) 

Fig-4: Avg. Velocity vs    plots (a) for different values of    and (b) for different values of Hall 

parameter, while keeping       
 

 
              

Figure 4 depicts the average velocity plots with Hartmann's number for different values of 

Darcy number and Hall parameter. The average velocity is decreasing with the increment of 

Darcy number, which is represented in figure 4(a). The permeability of the porous medium 



increases the value of Darcy number; as a result, the porosity reduces the flow velocity. It can 

be observed from figure 4(b) that the increment of the Hall parameter enhanced the average 

velocity. The increment of Hall parameter reduces the electric conductivity of the fluid and 

therefore the applied magnetic damping effect reduces and as a result fluid velocity is 

enhanced. The average velocity increases with the enhancement of the transverse electric 

field that is displayed in figure 5. The strength of the transverse electric field is acting as a 

flow aiding force. As a result the average velocity of the flow is improved with the increment 

of  . The increase of Hartmann number enhanced the average velocity rapidly with the 

increment of the transverse electric field, which is shown in figure 5(a). A similar physical 

phenomenon is observed for the decrement of Darcy number, which is represented in figure 

5(b), but it is interesting to know that for the low value of   the average velocity is enhanced 

with the increases of Darcy number.  The average velocity is increasing with the increases of 

pressure gradient, which is shown in figure 6. The average velocity increases with the 

increment of Hartmann number and hall parameter, which are displayed in figure 6(a) and 

6(c), respectively but there is a reduction in average velocity with the increment of Darcy 

number, which is depicted in figure 6(b).  
 

 
                                        (a)                                                                              (b) 

Fig-5: Avg. velocity vs   plots (a) for different values of    and (b) for different values   , while 

keeping       
 

 
             

 

 
                         (a)                                                   (b)                                                    (c) 

Fig-6: Avg. Velocity vs   plots (a) for different values of   , (b) for different values of Da and (c) for 

different values of Hall parameter, while keeping       
 

 
              



                                                                                                                                                                     

   
Fig-7: Temperature plots for different values of Hall parameter, while keeping       

 

 
   

                          

 

   

 



 
Fig-8: Temperature plots for different values of joule heating parameter, while keeping       
 

 
                            

The effect  Hall current and  joule heating on  temperature distribution is delineated in figure 

7 and figure 8. It is demonstrated in figure 7 that the temperature profile decreased with the 

increasing trend of Hall current effect. It also observed that the temperature is maximum for 

    i.e. non-existing case of Hall current.  In addition, when the joule heating parameter is 

increasing, then the temperature is increasing which is displayed in the figure 8.  

4 Conclusions :  

  From this investigation, the potential distribution and velocity distribution is analyzed for 

the EMHD flow through a circular microchannel with porous medium under the influence of 

Hall current. The following observations can be drawn from this numerical study: 

 The average velocity is inversely proportional to the applied magnetic field, and it is 

increasing rapidly for small values of Hartmann number. 

 Due to the impact of Hall current, there is a rise in the average velocity profile.  

 Flow-through the porous microchannel reduces with an increase of Darcy number. 
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