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ABSTRACT 

In complex bending applications, quite often elasto-plastic deformation is experienced in structures. To model this 

elasto-plastic deformation, elastic perfectly-plastic stress-strain model is generally considered. In the case of elastic 

bending problems, it is well known that moment –curvature based constitutive law is over the stress-strain law, for 

ease of solving the governing deflection equations. However, in the case of inelastic bending, a nontrivial 

transformation occurs between stress-strain model and moment-curvature based model. In the process of obtaining 

the moment-curvature law, a detailed through thickness stress profile is necessary for any given curvature. In this 

paper, a study is presented on stress profiles along the depth of the beam at different stages of cyclic loading 

subjected to elasto-plastic deformation. The results indicate interesting stress profiles which are observed at points 

of zero moment and curvature in an elasto-plastic loading cycle. 
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1. INTRODUCTION 

The primary purpose of beams as structural components is to support bending. The beam 

bending issue that is of interest for research is almost entirely non-linear in nature and results 

from material and/or geometric non-linearity. Researchers have devised various analytical, 

semi-analytical and numerical methods to solve such problems. Most analytical and semi-

analytical approaches established in the last few decades to address non-linear bending 

problems are based on techniques that were originally developed from elliptic integrals, series 

expansion, homotopy perturbation etc. and can be found in [1–6] and the references therein. 

The finite element method (FEM) is possibly the most efficient method when it comes to purely 

numerical techniques.  In this regard works mentioned in [7-11] is worth consulting. However, 

efforts to develop a non-FEM alternative that is more computationally affordable, effective, 

quick, and focused on beam mechanics have continued. Few methods are developed to solve 

elastic problems are mentioned in [12-19] Notable methods for resolving non-linear material 

problems can be found in [16,18] and the references therein.
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Bending is primarily associated with moment and curvature; many formulations make explicit 

use of this relationship. Most often, using this approach, problems related to material 

nonlinearity are addressed. This renders the moment-curvature approach's applicability quite 

clear. Since in most of the times, a material is experimentally tested for its uniaxial stress-strain 

response, for an elasto-plastic case, the transformation into a moment-curvature based model 

is non-unique and non-trivial in such cases, most often one converts the inelastic uniaxial 

stress-strain result or model into an equivalent moment-curvature relationship, depending on 

the cross-sectional geometry of the beam. A method to obtain moment-curvature relationship 

from uniaxial stress strain law of standard material models can be found in [20]. Results are 

obtained for rectangular and circular beam cross-section. One of the main conclusions of this 

mentioned work is that the moment-curvature response obtained from the elastic-perfectly 

plastic material model displayed near kinematic hardening behavior. Although numerous 

studies on elasto-plastic bending have been reported, as can be seen in the papers mentioned 

above, only few studies are available which are focused on determination of through thickness 

stresses in beams. Especially, in cyclic loading, at any unloaded state, due to permanent 

deformation, complex stress profile exists within the beam. The approach is constrained to thin 

inextensible beams that conform to the Euler-Bernoulli hypothesis under small strain 

conditions, but it could be expanded to cases including finite rotation (curvature).  

2. METHODOLOGY 

In this section the method of obtaining the stress profile across the depth of a beam at various 

stages of cyclic bending is presented briefly (the detailed account can be found in [20]). In 

this method, the beam is assumed to be divided into an even number of imaginary layers in 

the depth direction, with the assumption that the uniaxial stress-strain law is valid only at the 

centroid of the layers. As a result, every centroid line will experience an increase in strain 

due to an increase in curvature. This will result in an increase in stress as computed from the 

constitutive law. This increment in stress will result in the increment of moment about the 

centroid of the beam cross-section. The total moment increment caused by the curvature 

increase for the beam section will then be calculated by adding all such moment increments 

numerically for each layer. This step results in the generation of moment-curvature response. 

As the moment curvature is obtained by integrating the stress strain response across the beam 

depth, the stress profile across a given section at any stage of loading can be easily accessed. 
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To illustrate the moment-curvature response a rectangular and a circular beam cross-section 

of elasto-plastic material model are considered. Rectangular beam cross-section with width b 

and depth h and a circular cross-section of diameter h are considered as shown in fig 2 and 3. 

The beams are subjected to pure bending under curvature-controlled loading as shown in     

Fig 1. A sinusoidal curvature input is applied after normalizing it with respect to the yield 

curvature 0 . 2 00
Eh =  . Where 0 =yield stress of the material and E=young’s modulus, 

and h is either the depth or diameter of the cross-section as the case may be. Each of the beam 

cross-section is discretized into even number of imaginary layers of uniform thickness along 

the depth direction. The vertical coordinate axis designated by Y, originate from the centroid 

of the entire cross-section. Ensuring plane section to remains plane the increment in strain is   

                                                            Y  =                                                             (1)                                                                              

Where   = increment in total strain at a distance y from neutral axis,  =increment in 

curvature. 

The increment in strain is then used to obtain the increment in stress by using an appropriate 

material model. In this study elastic perfectly plastic material model is considered as illustrated 

in Fig 4. 

The incremental stress-strain relationship is given by: 

 ( ) pE   =  −   (1) 

Where  =  increment in stress,  =  increment in total strain, p = increment in plastic 

strain. 
 

 To obtain
p , a yield function f is defined as: 

                                                                                  0f  = −                                                                        (3) 

 

Where 0 = yield stress.  

And plastic load step check function g  is defined as: 

                                                                    g  =                                                                 (4) 

The condition applied to the model to obtain plastic strain increment reads: 

                                If 0f = and 0,g   then ,p  =  else 0p =                                    (5) 
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Subsequently, after determination of the stress increment, the increment in moment for the 

rectangular section reads: 

                                                          
2

2

h

h

M YbdY

−

 =                                                             (6) 

And for circular section it is defined as:  
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M Y Y dY
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                                                     Figure 1. Curvature vs. pseudo time input. 
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    Figure 2. Layering scheme                                                                Figure 3. Layering scheme  

    of rectangular beam cross-section                                               of circular beam cross-section 

    (Dotted line indicates centroidal                                                         (Dotted line indicates centroidal 

    axis of particular layer and solid                                                       axis of particular layer and solid 

      line are the layer’s boundary)                                                           line are the layer’s boundary) 
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3. RESULTS  

In accordance with the method discussed in the previous section, the stress at each layer 

corresponding to any curvature level is known. In Fig 5, the normalized moment M (with respect 

to yield moment 
2

0 0 6M bh=  for rectangular cross-section, 
3

0 0 32M h =  for circular cross-

section) is plotted against the normalized curvature   (with respect to yield curvature 

0 02 Eh = ) for a rectangular beam cross-section, discretized into 100 number of layers. 

Clearly, the well-known result of the asymptote value of 1.5 is obtained. Also, it can be seen that 

the response is kinematic in the moment curvature space. A very similar response with a different 

asymptote (value of 1.7) is obtained for a circular cross-section as shown in Fig 4. Also, as 

previously explained (in section 2), for any point on the curve of Fig.5 and Fig.6 the stress profile 

across the cross-section may be obtained easily. From Fig. 5 and 6, conjugate points are identified 

for same magnitude of curvature and named as A-D, B-E and C-F. The corresponding stress 

profiles are subsequently obtained and are given in Fig. 7, 8 and 9 for the rectangular cross-section 

and Fig. 10, 11 and 12 for the circular cross-section. Clearly, at A and at D, the beam is in positive 

and negative plastic loading states, respectively (sign chosen according to the sign of curvature). 

The corresponding stress profiles are shown in Fig.7 and 10. The points, B and E are points which 

have zero moment but have been previously plastically deformed. They correspond to the 

complex residual stress profiles as shown in Fig. 8 and 11 respectively for rectangular and circular 

sections respectively. The points C and F correspond to zero curvature states which have been 

previously plastically deformed as shown in Fig. 9 and 12. It can be seen that the conjugate points 

correspond to stress profile which are mirror image about the depth axis. The number of points of 

zero stress or the size of zero stress region on the depth axis appears to increase as elasto-plastic 

loading progresses. It is interesting to note here that there is a considerable region around the 

neutral axis which is stress free. It is also observed from the stress profile that non-dimensional 

stress at top and bottom most layer of circular beam cross-section (x2 in Fig 11= 0.64025) is 40% 

more compared to rectangular cross-section (x1 in Fig 8= 0.46007) at zero curvature state.                            
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                                  Figure 4. Stress-Strain diagram for elastic-perfectly plastic material model  
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     Figure 5. Moment-Curvature relation                                      Figure 6. Moment-Curvature relation     

       from perfectly plastic material model                                      from perfectly plastic material model 

             for rectangular cross-section                                                     for rectangular cross-section        
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            Figure 7 Stress profile                                 Figure 8 Stress profile                          Figure 9 Stress 

                       at point A D                                                at point E B                                  profile at point F C   

          for rectangular cross-section                        for rectangular cross-section           for rectangular cross-section        
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                Figure 10 Stress profile                       Figure 11 Stress profile                                 Figure 12 Stress 

                       at point A D                                          at point E B                                           profile at point F C                            

.           for circular cross-section                       for circular cross-section                            for circular cross-section                                      

 

 

5. CONCLUSION 

Since the moment curvature response is obtained by integrating the stress-strain response from 

the discretized beam cross-section, the corresponding stress profile across beam depth are easily 

accessed. Additionally, the profiles obtained are more accurate than approaches where moment 

curvature responses are considered in ad.hoc manners; like elastic perfectly plastic or elastic 

linearly hardening moment-curvature models. The stress profiles obtained show that, for the 

conjugate points on the moment-curvature plot, the stress profiles are mirror images of each 

other. Further, for the zero curvature conjugate points, it is found that there is a considerable 

region around the neutral axis which is free from stresses for both rectangular and circular 

section. This phenomenon is akin to a prestress condition. And since, portion of the beam is free 

from stresses; it can be further loaded to take more load. Also, it is found that stress at extreme 

top and bottom layer of circular section ( 2x  in Fig 11) is more compared to the rectangular 

section ( 1x in Fig 8) for zero moment state in moment –curvature response.  In future, other 

elasto-plastic material models and different cross-sections will be considered in the study. 

 

ACKNOWLEDGMENTS 

Financial support was provided by the Science & Engineering Research Board (SERB) in the 

framework of project (SRG/2021/001322) ‘Development of a Numerical Method to Predict 

Loading History from a Given Shape of a One-Dimensional Structure’ which is closely related 

to this research work. We are grateful for this partial financial assistance ship. 



Contributory Session 

Indian Institute of Technology, Mandi 

8 

 

 

REFERENCES 

1.Bisshopp, K.E. and Drucker, D.C., 1945.” Large deflection of cantilever beams”. Quarterly of applied 

mathematics, 3(3), pp.272-275. 

2.Rohde, F., 1953. “Large deflections of a cantilever beam with uniformly distributed load”. Quarterly 

of Applied Mathematics, 11(3), pp.337-338. 

3. Banerjee, A., Bhattacharya, B. and Mallik, A.K., 2008. “Large deflection of cantilever beams with 

geometric non-linearity: Analytical and numerical approaches”. International Journal of Non-Linear 

Mechanics, 43(5), pp.366-376.Dado, 

4. Wang, J., Chen, J.K. and Liao, S., 2008. “An explicit solution of the large deformation of a cantilever 

beam under point load at the free tip”. Journal of computational and applied mathematics, 212(2), 

pp.320-330. 

5.Ghaffarzadeh, H. and Nikkar, A., 2013. “Explicit solution to the large deformation of a cantilever beam 

under point load at the free tip using the variational iteration method-II”. Journal of Mechanical Science 

and Technology, 27(11), pp.3433-3438. 

6.Maleki, M., Tonekaboni, S.A.M. and Abbasbandy, S., 2014. “A homotopy analysis solution to large 

deformation of beams under static arbitrary distributed load”. Applied Mathematical Modelling, 38(1), 

pp.355-368. 

7.Coda, H.B. and Greco, M., 2004. “A simple FEM formulation for large deflection 2D frame analysis 

based on position description”. Computer methods in applied mechanics and engineering, 193(33-35), 

pp.3541-3557. 

8.Jiang, H., Ziegler, H., Zhang, Z., Atre, S. and Chen, Y., 2022. “Bending behavior of 3D printed 

mechanically robust tubular lattice metamaterials”. Additive Manufacturing, 50, p.102565. 

9. Bathe Klaus-Ju¨rgen and Bolourchi Said 1980 “A geometric and material nonlinear plate and shell 

element”. Computers & structures, 11(1-2): 23–48 

10. Spacone Enrico, Filippou Filip C and Taucer Fabio F 1996 “Fibre beam–column model for non-

linear analysis of r/c frames”: Part i. formulation. Earthquake Engineering & Structural Dynamics, 

25(7): 711–725 

11. Feng De-Cheng and Xu Jun 2018 “An efficient fiber beamcolumn element considering flexure–

shear interaction and anchorage bond-slip effect for cyclic analysis of rc structures”. Bulletin of 

Earthquake Engineering, 16(11): 5425–5452 

12.Wang, T.M., 1969. “Non-linear bending of beams with uniformly distributed loads”. International 

Journal of Non-Linear Mechanics, 4(4), pp.389-395. 

13.Lewis, G. and Monasa, F., 1981. “Large deflections of cantilever beams of nonlinear materials”. 

Computers & Structures, 14(5-6), pp.357-360. 

14.Rao, B.N. and Rao, G.V., 1988. “Large deflections of a nonuniform cantilever beam with end 

rotational load”. Forschung im Ingenieurwesen A, 54(1), pp.24-26. 

15.Beléndez, T., Neipp, C. and Beléndez, A., 2002. “Large and small deflections of a cantilever beam”. 

European journal of physics, 23(3), p.371. 

16. Lee, K., 2002. “Large deflections of cantilever beams of non-linear elastic material under a 

combined loading”. International Journal of Non-Linear Mechanics, 37(3), pp.439-443. 

17. Dado, M. and Al-Sadder, S., 2005. “A new technique for large deflection analysis of non-prismatic 

cantilever beams”. Mechanics research communications, 32(6), pp.692-703. 

18. Pascon, J.P., 2015. “Numerical analysis of highly deformable elastoplastic beams”. Latin American 

Journal of Solids and Structures, 12, pp.1595-1615. 

19.Ghuku, S. and Saha, K.N., 2016. “A theoretical and experimental study on geometric nonlinearity of 

initially curved cantilever beams”. Engineering Science and Technology, an International Journal, 19(1), 

pp.135-146. 

20. Pandit, D. and Patel, B.N., 2022. “On numerical moment-curvature relationship of  

beam”. Sādhanā, 47(1), pp.1-9. 

 


